福田の数学〜千葉大学2022年理系第2問〜三角形と三角比 - 質問解決D.B.(データベース)

福田の数学〜千葉大学2022年理系第2問〜三角形と三角比

問題文全文(内容文):
座標平面において、原点Oと点A(1,0)と点B(0,1)がある。$0 \lt t \lt 1$に対し、
線分BO,OA,ABのそれぞれを$t:(1-t)$に内分する点をP,Q,Rとする。
(1)$\triangle PQR$の面積をtの式で表せ。
(2)$\triangle PQR$が二等辺三角形になるときのtの値を全て求めよ。
(3)$\theta = \angle RPQ$とする。(2)それぞれの場合に$\cos\theta$を求めよ。

2022千葉大学理系過去問
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面において、原点Oと点A(1,0)と点B(0,1)がある。$0 \lt t \lt 1$に対し、
線分BO,OA,ABのそれぞれを$t:(1-t)$に内分する点をP,Q,Rとする。
(1)$\triangle PQR$の面積をtの式で表せ。
(2)$\triangle PQR$が二等辺三角形になるときのtの値を全て求めよ。
(3)$\theta = \angle RPQ$とする。(2)それぞれの場合に$\cos\theta$を求めよ。

2022千葉大学理系過去問
投稿日:2022.05.14

<関連動画>

平方根の方程式 あれに気をつけて

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \sqrt{6x+7}-\sqrt{9x+1}=1$
これを解け.
この動画を見る 

福田の数学〜早稲田大学2025人間科学部第2問〜絶対値の付いた関数の最小

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

$a\lt b \lt c$を満たす実数の定数に対して、

すべての実数を定義域とする$x$の関数

$f(x)=\vert x-a \vert + \vert x-b \vert + \vert x-c \vert $を定める。

このとき、$5x+4f(x)$の最小値は

$\boxed{ク}a + \boxed{ケ}b + \boxed{コ}c$である。

また、$f(x)$の最小値が$20$で、

$f(c)=28$かつ$f(10)=31$を満たす$a$の値は

$\boxed{サ}$と$\boxed{シ}$である。

ただし、$\boxed{サ} \lt \boxed{シ}$とする。

$2025$年早稲田大学人間科学部過去問題
この動画を見る 

【数Ⅰ】【2次関数】2次関数の最大最小場合分け10 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#2次関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$a$は定数とする。関数$y=x^2-2x+1(a\leqq x\leqq a+1)$について
(1) 最小値を求めよ
(2) 最大値を求めよ
この動画を見る 

【数Ⅰ】【数と式】式の展開2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#数と式#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
展開せよ
${(a+1)}^3$    ${(x+3y)}^3$
${(2a-1)}^3$    ${(-3a+2b)}^3$

展開せよ
$(a+5)(a^2-5a+25)$     $(3-a)(9+3a+a^2)$
$(2x+y)(4x^2-2xy+y^2)$  $(3a-2b)(9a^2+6ab+4b^2)$

計算せよ
$(x-1)(x-3)(x+1)(x+3)$      $(x+2)(x+5)(x-4)(x-1)$
$(a-b)(a+b)(a+b)(a+b) $     ${(2x-y)}^3{(2x+y)}^3$
${(a+b)}^2{(a-b)}^2{(a+ab+b)}^2{(a-ab+b)}^2$
$(x+2)(x-2)(x^2+2x+4)(x^2-2x+4)$
${(a+b+c)}^2+{(a+b-c)}^2+{(b+c-a)}^2+{(c+a-b)}^2$
この動画を見る 

【高校数学】絶対値の1次不等式まとめ 1-14.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
$\displaystyle
(1)\,|x-4|\leqq 3x
$
$\displaystyle
(2)\,|x|+|x-2| < x+1
$
$\displaystyle
(3)\,|2x+1|\leqq |2x-1|+x
$
この動画を見る 
PAGE TOP