慶應(理) 関数の極限 - 質問解決D.B.(データベース)

慶應(理) 関数の極限

問題文全文(内容文):
$x\gt 0,e a \fallingdotseq 2.71・・・$

(1)$\sqrt x \log_x \gt -1$を示せ.
(2)(1)を利用して$\displaystyle \lim_{x\to +0} x\log x=0$を示せ.

2019慶應(理)過去問
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x\gt 0,e a \fallingdotseq 2.71・・・$

(1)$\sqrt x \log_x \gt -1$を示せ.
(2)(1)を利用して$\displaystyle \lim_{x\to +0} x\log x=0$を示せ.

2019慶應(理)過去問
投稿日:2021.04.15

<関連動画>

大学入試問題#86 防衛医科大学(1988) 極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$0 \lt a$:実数
$\displaystyle \lim_{ n \to \infty }(a^n+(1+a)^n)^{\frac{1}{n}}$を求めよ。

出典:1988年防衛医科大学 入試問題
この動画を見る 

福田の数学〜千葉大学2023年第4問〜関数の増減と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 2つの実数$a$,$b$は0<$b$<$a$を満たすとする。関数
$f(x)$=$\displaystyle\frac{1}{b}\left(e^{-(a-b)x}-e^{-ax}\right)$
の最大値を$M(a,b)$、最大値をとるときの$x$の値を$X(a,b)$と表す。ここで、$e$は自然対数の底である。
(1)$X(a,b)$を求めよ。
(2)極限$\displaystyle\lim_{b \to +0}X(a,b)$ を求めよ。
(3)極限$\displaystyle\lim_{b \to +0}M(a,b)$ を求めよ。
この動画を見る 

【高校数学】無理関数のグラフの裏ワザ!例題もあるよ!

アイキャッチ画像
単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の無理関数のグラフをかけ。
(1)$y=\sqrt{x+2}$
(2)$y=\sqrt{-3x-6}$
(3)$y=-\sqrt{7-4x}$
(4)$y=-\sqrt{\dfrac{1}{2}x-3}$
この動画を見る 

【困難は分割せよ!】関数:ラ・サール高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#関数(分数関数・無理関数・逆関数と合成関数)#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 ラ・サール高等学校

$-1 \leqq x \leqq 2, 3 \leqq y \leqq 4$
のとき、
$x^2y-y$
の最大値と最小値を求めよ。
この動画を見る 

いくつでしょうか?

アイキャッチ画像
単元: #関数と極限#数列の極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 2^{\frac{1}{4}}・ 4^{\frac{1}{8}}・8^{\frac{1}{16}}・16^{\frac{1}{32}}……\infty $
これを解け.
この動画を見る 
PAGE TOP