大学入試問題#297 産業医科大学(2010) #極限 - 質問解決D.B.(データベース)

大学入試問題#297 産業医科大学(2010) #極限

問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\cos\ x-x^2-1}{x^2}$

出典:2010年産業医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\cos\ x-x^2-1}{x^2}$

出典:2010年産業医科大学 入試問題
投稿日:2022.09.01

<関連動画>

【数学模試解説】2022年度1月 第4回 高2K塾記述模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)$AB=5,BC=7,CA=6$の三角形$ABC$がある。$\cos\angle BAC$の値と三角形$ABC$の外接円の半径を求めよ。
(2)$a$は実数の定数とする。$x$の2次方程式$x^2-2ax+5a-6=0$が異なる2つの正の解をもつようなaの値の範囲を求めよ。
(3)方程式$x^3-4x^2+8=0$を解け。
(4)$m$は実数の定数とする。座標平面における原点$O$と直線$y=mx+m+2$の距離が2より大きくなるようなmの値の範囲を求めよ。
(5)実数$x$が、$2^x+2^{-x}=3$を満たしている。$4^x+4^{-x}$の値を求めよ。
(6)方程式$\log_4(5x-1)=log_2(2x-1)$を解け。
大問2:三角関数
(1)$\sin\dfrac{\pi}{12},\cos\dfrac{\pi}{12}$の値を求めよ。
(2)$O$を原点とする$xy$平面上に$O$を中心とする半径1の円$E$があり、$E$上に3点$A(0,-1),B\left(-\dfrac{\sqrt3}{2},\dfrac{1}{2}\right), C\left(\dfrac{1}{2},-\dfrac{\sqrt3}{2}\right)$がある。また、$E$の上に点$P$をとり、$P(\cosθ,\sinθ)\left(0\leqq \theta\leqq\dfrac{\pi}{2}\right)$とするとき、$L$を$L=AP^2+BP^2+CP^2$と定める。
(i)$L$を$\theta$で表せ。
(ii)$\theta$が$0\leqq\theta\leqq\dfrac{\pi}{2}$を変化するとき、$L$の最大値、最小値とそれを与える$\theta$の値を求めよ。
大問3:場合の数
1,2,3,4,5,6,7,8,9の9枚のカードを$A,B,C$の3人に3枚ずつ配る。
(1)カードの配り方は全部で何通りあるか。
(2)$A$のカードの番号がいずれも2の倍数であるような3人への配り方は何通りあるか。
(3)$A$のカードの番号の積が3の倍数となるような3人への配り方は何通りあるか。
(4)$A,B,C$のカードの番号の積がそれぞれ6の倍数となるような3人への配り方は何通りあるか。
大問4:微分法
$a$を正の定数とし、関数$f(x)$を$f(x)=x^2-ax^2+4a-8$とする。
連立不等式$y\geqq f(x),y\leqq f(0),x\geqq 0$を満たす整数の組$(x,y)$の個数を$N(a)$とする。
(1)$a=2$のとき、$f(x)$の増減、極値を調べ、$y=f(x)$のグラフの概形をかけ。
(2)$N(2)$を求めよ。
(3)$f(x)$の極大値を$M$とする。曲線$y=f(x)$と直線$y=M$の共有点のx座標のうち、正であるものを求めよ。
(4)$a$を$\dfrac{9}{4}\lt a\lt\dfrac{5}{2}$を満たす定数とするとき、$N(a)=N(2)$となるような$a$の値の範囲を求めよ。
大問5:数列
$r$は0以外の実数とする。数列${a_n}$は、$a_1=1,a_{n+1}=ra_n (n=1,2,3,…)$を満たしている。また、この数列${a_n}$に対して、数列${b_n}$を、$b_1=-1,b_{n+1}=2b_n+a_n (n=1,2,3,…)$によって定める。
(1)数列${a_n}$の一般項を求めよ。
(2)数列${c_n}$を $c_n=\dfrac{b_n}{r^n}$ によって定める。
(i)$c_{n+1}$を$r$と$c_n$を用いて表せ。
(ii)数列${c_n}$の一般項を求めよ。
(3)$S_n=\displaystyle \sum_{k=1}^n b_k$とする。$r=2$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。また、$r=4$のとき、$S_n$を最小にする正の整数$n$の値をすべて求めよ。
この動画を見る 

福田の数学〜大阪大学2022年理系第2問〜三角関数と論証

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#推理と論証#推理と論証#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\alpha=\frac{2\pi}{7}$とする。以下の問いに答えよ。
(1)$\cos4\alpha=\cos3\alpha$であることを示せ。
(2)$f(x)=8x^3+4x^2-4x-1$とするとき、$f(\cos\alpha)=0$が成り立つことを示せ。
(3)$\cos\alpha$は無理数であることを示せ。

2022大阪大学理系過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(1)〜絶対値の付いた方程式の解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)方程式$4||x|-1|=x+2$の解を全て求めると$x=\boxed{\ \ あ\ \ }$ となる。

2022慶應義塾大学医学部過去問
この動画を見る 

大学入試問題#870「基本問題」 #東北大学医学部AO(2019) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$S_n=2a_n+3n$を満たす数列$\{a_n\}$の一般項$a_n$を求めよ。

出典:2019年東北大学医学部AO
この動画を見る 

京都大学 確率 数列 融合問題 高校数学 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2005京都大学過去問題
1~nまでの番号のついてn枚($n \geqq 3$,自然数)から3枚取り出して小さい順に並べたときに等差数列になる確率を求めよ.
この動画を見る 
PAGE TOP