大学入試問題#297 産業医科大学(2010) #極限 - 質問解決D.B.(データベース)

大学入試問題#297 産業医科大学(2010) #極限

問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\cos\ x-x^2-1}{x^2}$

出典:2010年産業医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#産業医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{\cos\ x-x^2-1}{x^2}$

出典:2010年産業医科大学 入試問題
投稿日:2022.09.01

<関連動画>

福田の数学〜東京理科大学2023年創域理工学部第1問(2)〜高次方程式と解と係数の関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)A, B, C, Dを定数とする。$f(x)$=$2x^3$-$9x^2$+$Ax$+$B$, $g(x)$=$x^2$-$Cx$-$D$
とおく。以下の問いに答えよ。
(a)$g(1-\sqrt 2)$=0 かつ $g(1+\sqrt 2)$=0のとき、$C$=$\boxed{\ \ セ\ \ }$, $D$=$\boxed{\ \ ソ\ \ }$である。また、$f(1-\sqrt 2)$=0 かつ $f(1+\sqrt 2)$=0のとき、$A$=$\boxed{\ \ タ\ \ }$, $B$=$\boxed{\ \ チ\ \ }$であり、方程式$f(x)$=0を満たす有理数$x$は
$x$=$\frac{\boxed{\ \ ツ\ \ }}{\boxed{\ \ テ\ \ }}$
である。
この動画を見る 

福田の数学〜中央大学2023年理工学部第3問〜関数の変曲点と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $f(x)=\displaystyle\frac{1}{1+e^{-x}}$とし、曲線$y$=$f(x)$をCとする。以下の問いに答えよ。
(1)曲線Cの変曲点Pの座標を求めよ。
(2)曲線Cの点Pにおける接線$l$の方程式を求めよ。また、直線$l$と直線$y$=1の交点の$x$座標$a$を求めよ。
(3)$b$を(2)で求めた$a$より大きい実数とする。曲線Cと直線$y$=1, $x$=$a$, $x$=$b$で囲まれた部分の面積$S(b)$を求めよ。
(4)$\displaystyle\lim_{b \to \infty}S(b)$を求めよ。
この動画を見る 

福田の数学〜早稲田大学2025人間科学部第1問(3)〜球面が平面から切り取る領域の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(3)座標空間における$2$点

$\left(\dfrac{\sqrt{35}}{2},5,10\right),\left(-\dfrac{\sqrt{35}}{2},10,-4\right)$

を直径の両端とする球面$S$がある。

球面$S$が$xy$平面を切り取る領域の面積は

$\boxed{カ}\pi$である。

また、球面$S$が$z$軸を切り取る線分の長さは

$\sqrt{\boxed{キ}}$である。

$2025$年早稲田大学人間科学部過去問題
この動画を見る 

大学入試問題#622「公式にしたがって」 九州歯科大学(2016) #級数 僚太さんの紹介

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#九州歯科大学
指導講師: ますただ
問題文全文(内容文):
$x^2+8x+c=0$の異なる2つの実数解を$\alpha,\beta$とする
$\displaystyle \sum_{k=1}^\infty (\alpha-\beta)^{2k}=3$のとき$c$の値を求めよ。

出典:2010年九州歯科大学 入試問題
この動画を見る 

福田の数学〜一橋大学2025文系第4問〜ベクトル方程式と領域と角を2等分するベクトル

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#軌跡と領域#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

原点を$O$とする座標空間内の

$2$点$A(0,3,-5),B(5,-2,10)$に対して

$\overrightarrow{OP}=s\left \{ (1-t)\overrightarrow{OA}+t\overrightarrow{OB} \right \},x\geqq 0,\dfrac{1}{5} \leqq t \leqq \dfrac{3}{5}$

で定まる点$P$が存在する範囲を$D$とする。

$D$に含まれる半径$10\sqrt2$の円のうち、

その中心と原点との距離が最小となるものを

$C$とする。

円$C$の中心の座標を求めよ。

$2025$年一橋大学文系過去問題
この動画を見る 
PAGE TOP