2021一橋(経済)後期 - 質問解決D.B.(データベース)

2021一橋(経済)後期

問題文全文(内容文):
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.

一橋(経済)過去問
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.

一橋(経済)過去問
投稿日:2021.11.26

<関連動画>

指数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 8^a=27^b=64^c=24,\dfrac{2022 abc}{ab+bc+ca}$
の値を求めよ.
この動画を見る 

福田の数学〜早稲田大学2022年商学部第1問(4)〜3次関数のグラフの回転と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(4)3次関数f(x)は、x=1で極大値5をとり、x=2で極小値4をとる。
関数$f(x)(x \geqq 0)$のグラフを、原点を中心に時計回りに
θ回転して得られる図形を$C(θ)$とする。
ただし、$0 \lt θ \lt \pi$とする。$C(θ)$と$x$軸の共有点が相異なる3点であるとき、
それらを$x$座標の小さい順に$P_θ,Q_θ,R_θ$とする。線分$Q_θR_θ$と$C(θ)$で
囲まれた部分の面積が$\frac{81}{32}$であるとき、$Q_θ$の$x$座標は$\boxed{\ \ エ\ \ }$である。

2022早稲田大学商学部過去問
この動画を見る 

【2通りで解説】微分禁止!問題文から「あれ」を使う匂いがぷんぷんします【東京大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
kを正の実数とし,二次方程式$x^{2}+x-k=0$の二つの実数解を、$\alpha,\beta$とする。
$kがk>2$の範囲を動くとき,

$\displaystyle \frac{\alpha^{3}}{1-\beta}+\displaystyle \frac{\beta^{3}}{1-\alpha}$
の最小値を求めよ。

東大過去問
この動画を見る 

分数の式の値 國學院高校 企業案件ではありません

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#式と証明#整式の除法・分数式・二項定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{A}{B} = \frac{A+15}{B+42}$のとき$\frac{A}{B} =?$

国学院高等学校
この動画を見る 

大分大 指数 最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$9^x+\displaystyle \frac{1}{9^x}-4a(3^x+\displaystyle \frac{1}{3^x})$の最小値とその時の$x$の値を求めよ

出典:2018年大分大学 過去問
この動画を見る 
PAGE TOP