2021一橋(経済)後期 - 質問解決D.B.(データベース)

2021一橋(経済)後期

問題文全文(内容文):
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.

一橋(経済)過去問
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(sin x+1)(cos x+1)=k$の解が$0\leqq x\lt 2\pi$の範囲にちょうど2つある$k$を求めよ.

一橋(経済)過去問
投稿日:2021.11.26

<関連動画>

分数式の計算(数II)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{x+2}{x^2-4} - \frac{1}{x-1}$

札幌学院大学
この動画を見る 

【数Ⅱ】図形と方程式:束の考え方…我々は一体何をさせられているのか。

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2つの円
$x^2+y^2=25$
$(x-4)^2+(y-3)^2=2$
について
(1)2つの円の交点を通る直線の式を求めよ
(2)2つの円の交点と(3,1)を通る円の式を求めよ
この動画を見る 

福田の数学〜早稲田大学2025教育学部第4問〜共有点の個数と面積計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{4}$

$k$は実数とする。

曲線$C:y=(x^3-x+2)e^{-x}$と直線$y=k$との

共有点の偶数を$f(k)$で表す。次の問いに答えよ。

ただし、必要ならば自然数$n$に対し

$\displaystyle \lim_{x\to\infty} x^n e^{-x}=0$が成り立つことは

説明なしに用いてもよい。

(1)$k$が実数全体を動くとき、

$f(k)$の最大値の最小値を求めよ。

(2)$f(k)=2$を満たす$k$の値の範囲を求めよ。

(3)$\alpha$を正の実数とする。

曲線$C,x$軸,$y$軸,および直線$x=\alpha$で囲まれる

部分の面積を$\alpha$を用いて表せ。

$2025$年早稲田大学教育学部過去問題
この動画を見る 

10東京都教員採用試験(数学:1-(1) 解と係数の関係)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣$2x^2-3x+2=0$の2つの解をα、βとする。
$α+\frac{1}{β}$,$β+\frac{1}{α}$を解にもつ$x^2$の係数が1となる2次方程式を求めよ。
この動画を見る 

長崎大(医) 三角関数 方程式解の個数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$0 \leqq x \leqq \pi$のとき、方程式$\cos 2x+4a \sin x +a-2=0$が異なる2つの解をもつための$a$の範囲

出典:1988年長崎大学医学部 過去問
この動画を見る 
PAGE TOP