数検準1級1次過去問【2020年12月】4番:複素数 - 質問解決D.B.(データベース)

数検準1級1次過去問【2020年12月】4番:複素数

問題文全文(内容文):
$\boxed{4} \alpha=-2+i$で,$\beta=-3-i$である.これを解け.

(1)$\left| \dfrac{\alpha}{\beta} \right|$を求めよ.
(2)$\left( -\frac{\alpha}{\beta} \right)^{45}$の偏角$\theta$を求めよ.
$(0\leqq \theta \lt 2\pi)$
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学検定#数学検定準1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{4} \alpha=-2+i$で,$\beta=-3-i$である.これを解け.

(1)$\left| \dfrac{\alpha}{\beta} \right|$を求めよ.
(2)$\left( -\frac{\alpha}{\beta} \right)^{45}$の偏角$\theta$を求めよ.
$(0\leqq \theta \lt 2\pi)$
投稿日:2020.12.17

<関連動画>

素数に関する問題 明治学院

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
m,nを1ケタの自然数とする。
(m+n)(n-2)が素数となる(m,n)の組はいくつあるか。

明治学院高等学校
この動画を見る 

愛があれば解決する。愛はなくても問題ない

アイキャッチ画像
単元: #数Ⅱ#式と証明#複素数と方程式#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+2\sqrt{3}y=\dfrac{x}{x^2+y^2} \\
2\sqrt{3}x-2y=\dfrac{y}{x^2+y^2}
\end{array}
\right.
\end{eqnarray}$
連立方程式を解け.
この動画を見る 

神戸大 3次方程式の基本問題

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#複素数平面#一次不等式(不等式・絶対値のある方程式・不等式)#複素数#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は整数である。
$x^3+ax^2+bx+c=0$は$\alpha=\dfrac{3+\sqrt{7}i}{2}$と0以上1以下の解をもつ(a,b,c)をすべて求めよ.

神戸大過去問
この動画を見る 

【高校数学】数Ⅲ-7 複素数の積と商①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
⑦$z_1=2\left(\cos\dfrac{\pi}{3}+i\sin\dfrac{\pi}{3}\right),z_2=5\left(\cos\dfrac{2}{3}\pi+i\sin\dfrac{2}{3}\pi\right)$のとき,
$z_1 z_2$と,$\dfrac{z_1}{z_2}$を求めよう.
この動画を見る 

【高校数学】数Ⅲ-16 円と分点②

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の等式を満たす点$z$はどのような図形をえがくか.

①$\vert z-3i \vert =2$

②$\vert z+5-2i \vert =4$

③$\vert z-3 \vert=\vert z+1-i \vert$

④$\vert z+4i \vert =2\vert z+i \vert $
この動画を見る 
PAGE TOP