【数Ⅲ-164】定積分と不等式の証明 - 質問解決D.B.(データベース)

【数Ⅲ-164】定積分と不等式の証明

問題文全文(内容文):
数Ⅲ(定積分と不等式の証明)

①$0≦x≦1$のとき、$1-x^2≦1-x^4≦1$が成り立つことを示せ。
②不等式$\frac{\pi}{4} \lt \int_0^1\sqrt{1-x^4}dx \lt 1$を示せ。
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分と不等式の証明)

①$0≦x≦1$のとき、$1-x^2≦1-x^4≦1$が成り立つことを示せ。
②不等式$\frac{\pi}{4} \lt \int_0^1\sqrt{1-x^4}dx \lt 1$を示せ。
投稿日:2020.08.08

<関連動画>

大学入試問題#619「正面突破」 福岡女子大学(2021) #定積分 僚太さんの紹介

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \displaystyle \frac{1}{x^2}log\sqrt{ 9-x^2 }\ dx$

出典:2021年福岡女子大学 入試問題
この動画を見る 

福田の数学〜上智大学2022年理工学部第2問〜三角比と通過領域の体積

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
tを実数とする。次の条件(★)を満たす$\triangle ABC$を考える。
(★)$AC=t,\ BC=1$を満たし、$\angle BAC$の2等分線と辺BCの交点をDとおくと、
$\cos\angle DAC=\frac{\sqrt3}{3}$である。
(1)$\cos\angle DAC=\frac{\boxed{カ}}{\boxed{キ}}$である。
(2)tの取りうる範囲を$t_1\lt t \lt t_2$とするとき、$t_1=\boxed{あ},t_2=\boxed{い}$である。

$\boxed{あ},\ \boxed{い}$の選択肢
$(\textrm{a})0\ \ \ (\textrm{b})\frac{1}{3}\ \ \ (\textrm{c})\frac{1}{2}\ \ \ (\textrm{d})\frac{\sqrt3}{3}\ \ \ (\textrm{e})\frac{2}{3}$
$ (\textrm{f})1\ \ \ (\textrm{g})\frac{2\sqrt3}{2}\ \ \ (\textrm{h})\sqrt3\ \ \ (\textrm{i})2\ \ \ (\textrm{j})3$

(3)辺ABの長さをtの式で表すと$AB=\frac{\boxed{ク}}{\boxed{ケ}}t+$
$\sqrt{1+\frac{\boxed{コ}}{\boxed{サ}}t^2}$である。

(4)$\triangle ABC$の面積は$t=\frac{\sqrt{\boxed{シ}}}{\boxed{ス}}$
で最大値$\frac{\sqrt{\boxed{セ}}}{\boxed{ソ}}$をとる。

(5)$t_1,t_2$を(2)で定めた値とする。
$t_1 \lt t \lt t_2$の範囲で、xyz-座標空間内の平面z=t上に、条件(★)を満たす
$\triangle ABC$が、$B(0,0,t),C(0,1,t)$を満たし、Aのx座標が正であるように
おかれている。まgた、$B_1(0,0,t_1),C_1(0,1,t_1),B_2(0,0,t_2),C_2(0,1,t_2)$と
おく。
$\triangle ABC$を$t_1 \lt t \lt t_2$の範囲で動かしたときに通過してできる図形に線分$B_1C_1$、
線分$B_2C_2$を付け加えた立体の体積は$\frac{\sqrt{\boxed{タ}}}{\boxed{チ}}$である。
この動画を見る 

福田の数学〜京都大学2023年理系第1問(1)〜定積分の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
今回は京都大学2023年理系第1問(1)。定積分の計算の問題。
$\int_1^4 \sqrt{x}\log (x^2)dx$を求めよ

2023京都大学理系過去問
この動画を見る 

こういう問題に苦手意識ある人は必見です【甲南大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
次の2つの等式を満たす多項式$(x),g(x)$及び定数$a$を求めよ。

$\displaystyle \int_{1}^{x} f(t) dt=2xg(x)-3x+a $

$g(x)=x^2+x \displaystyle \int_{0}^{1} f(t)dx+1$

甲南大過去問
この動画を見る 

20年5月数学検定準1級1次試験(積分)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#定積分#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
5⃣
(1)$\int \frac{dx}{sin2x}$
(2)$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{dx}{sin2x}$
この動画を見る 
PAGE TOP