大学入試問題#278 金沢医科大学(2012) #定積分 #極限 - 質問解決D.B.(データベース)

大学入試問題#278 金沢医科大学(2012) #定積分 #極限

問題文全文(内容文):
$f(x)=\displaystyle \int_{0}^{x}(1+2\cos5t)^2dt$のとき
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(x)}{x},\displaystyle \lim_{ x \to \infty }\displaystyle \frac{f(x)}{x}$を求めよ。

出典:2012年金沢医科大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#金沢医科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=\displaystyle \int_{0}^{x}(1+2\cos5t)^2dt$のとき
$\displaystyle \lim_{ x \to 0 }\displaystyle \frac{f(x)}{x},\displaystyle \lim_{ x \to \infty }\displaystyle \frac{f(x)}{x}$を求めよ。

出典:2012年金沢医科大学 入試問題
投稿日:2022.08.11

<関連動画>

大学入試問題#114 岡山県立大学(2009) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{1-x}{(1+x^2)^2}\ dx$を計算せよ。

出典:2009年岡山県立大学 入試問題
この動画を見る 

大学入試問題#828「式変形難しめの良問!」 #久留米大学医学部(2024) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#久留米大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n \displaystyle \frac{3k+5}{(3k-1)(3k+2)2^{k+1}}$

出典:2024年久留米大学医学部
この動画を見る 

大学入試問題#637「朝のトーストと一緒にどうぞ!」埼玉大学

アイキャッチ画像
単元: #大学入試過去問(数学)#不定積分#数学(高校生)#埼玉大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{1}{e^x-e^{-x}} dx$

出典:2017年埼玉大学 入試問題
この動画を見る 

3点が一直線上  明星

単元: #数学(高校生)#明星大学
指導講師: 数学を数楽に
この動画を見る 

岐阜大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数$x,y$
$x+y,xy$はともに偶数

(1)
$x^n+y^n$は偶数であることを示せ
$(n$自然数$)$

(2)
整数以外の$(x,y)$を1つ例示せよ

出典:岐阜大学 過去問
この動画を見る 
PAGE TOP