この手があったか!分母の有理化 - 質問解決D.B.(データベース)

この手があったか!分母の有理化

問題文全文(内容文):
$\frac{21}{\sqrt 7}=$
単元: #数学(中学生)#中3数学#平方根#数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{21}{\sqrt 7}=$
投稿日:2024.05.22

<関連動画>

中学生にとっては激ムズすぎる 仙台育英(改)

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#2次関数#2次方程式と2次不等式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2次方程式$2x^2-mx-m=0$の解の1つが1よりも大きいとき、mの値の範囲を求めよ。
(仙台育英学園高等学校 誘導省略)
この動画を見る 

福田の数学〜よくある図形問題ですが微分で困ったことに〜明治大学2023年理工学部第3問〜三角比と最大

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[ 3 ]長さ 2 の線分 AB を直径とする円 O の周上に、点 P を$cos\angle PBA=\dfrac{\sqrt{3}}{3}$となるようにとる。このとき、 BP =$\fbox{か}$である。線分 AB 上に A, B とは異なる点 Q をとり、$x= AQ ( 0 くxく 2 )$とする。 PQ をxの式で表すと PQ =$\fbox{き}$となる。また、三角形 BPQ の面積 s をxの式で表すと s =$\fbox{く}$である。直線 PQ と円 O の交点のうち、 P でないものを R とする。三角形 AQR の面積Tをxの式で表すとT=$\fbox{け}$である。また、$0 くxく2$の範囲でxを動かすとき、Tが最大になるのは$x=\fbox{こ}$のときだけである。

2023明治大学理工学部過去問
この動画を見る 

福田の数学〜上智大学2022年理工学部第1問(1)〜集合と論理

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)x,yを実数とする。次の条件を考える。
$p:xy$が無理数である.
$q:x,y$がともに無理数である.
$r:x,y$の少なくとも一方が無理数である.
$(\textrm{i})$以下から真の命題をすべて選べ。
$(\textrm{a})p \Rightarrow q\ \ \ (\textrm{b})p \Rightarrow r\ \ \ (\textrm{c})q \Rightarrow p\ \ \ (\textrm{d})q \Rightarrow r\ \ \ (\textrm{e})r \Rightarrow p\ \ \ (\textrm{f})r \Rightarrow q\ \ \ \\
(\textrm{ii})x,y$が命題「$p \Rightarrow q$」の判例であるための必要十分条件を、すべて選べ。
$(\textrm{a})$「$xy$が無理数」かつ「x,yが共に有理数」である。
$(\textrm{b})$「$xy$が有理数」かつ「x,yが共に有理数」である。
$(\textrm{c})$「$xy$が有理数」かつ「xが有理数、または、yが有理数」である。
$(\textrm{d})$「$xy$が無理数」かつ「xが有理数、または、yが有理数」である。
$(\textrm{e})$「$xy$が無理数、かつxが有理数」または「xyが無理数、かつ、yが有
理数」である。
$(\textrm{f})$「$xy$が無理数、かつxが有理数」または「xyが有理数、かつ、yが有
理数」である。

2022上智大学理工学部過去問
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題1[2]。三角比を用いた測量の問題。

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第1問\ [2] 太郎さんは花子さんは、キャンプ場のガイドブックにある地図を見ながら、
後のように話している。

太郎:キャンプ場の地点Aから山頂Bを見上げる角度はどれくらいかな。
花子:地図アプリを使って、地点Aと山頂Bを含む断面図を調べたら、
図1(※動画参照)のようになったよ。点Cは、山頂Bから地点Aを通る水平面に下ろした
垂線とその水平面との交点のことだよ。
太郎:図1の角度\thetaは、AC,BCの長さを定規で測って、
三角比の表を用いて調べたら16°だったよ。
花子:本当に16°なの?図1の鉛直方向の縮尺と水平方向の縮尺は等しい
のかな?

図1の$\theta$はちょうど16°であったとする。しかし、図1の縮尺は、水平方向が$\frac{1}{100000}$
であるのに対して鉛直方向は$\frac{1}{25000}$であった。
実際にキャンプ場の地点Aから山頂Bを見上げる角である$\angle BAC$を考えると、
$\tan\angle BACは\boxed{\ \ コ\ \ }.\boxed{\ \ サシス\ \ }$である。

したがって、$\angle BAC$の大きさは$\boxed{セ}$、ただし、目の高さは無視して考えるものとする。

$\boxed{セ}$の解答群
⓪3°より大きく4°より小さい ①ちょうど4°である ②4°より大きく5°より小さい
③ちょうど16°である ④48°より大きく49°より小さい ⑤ちょうど49°である
⑥49°より大きく50°より小さい ⑦63°より大きく64°より小さい ⑧ちょうど64°である
⑨64°より大きく65°より小さい

2022共通テスト数学過去問
この動画を見る 

【高校数学】2次関数~平行移動・対称移動の混合問題~ 2-3.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
放物線$y=ax^2+bx+c$を$x$軸方向に4、$y$軸方向に-2だけ平行移動した後
$x$軸に関して対称移動したものの方程式が$y=2x^2-6x-4$になった。
定数$a,b,c$を求めよ。
この動画を見る 
PAGE TOP