福田の数学〜東京科学大学(旧・東京工業大学)2025理系第3問〜確率漸化式と無限級数の和 - 質問解決D.B.(データベース)

福田の数学〜東京科学大学(旧・東京工業大学)2025理系第3問〜確率漸化式と無限級数の和

問題文全文(内容文):
$\boxed{3}$

$0\lt p\lt 1$とする。

表が出る確率が$p$、裏が出る確率が$1-p$である

$1$枚のコインを使って次のゲームを行う。

・ゲームの開始時点で点数は$0$点

・コインを投げ続け、表が出るごとに$1$点加算し、
 裏が出たときは点数はそのまま

・$2$回続けて裏が出たらゲームは終了。

$0$以上の整数$n$に対し、ゲームが終わったときに

$n$点となっている確率を$Q_n$とする。

(1)$Q_1,Q_2$を$p$を用いて表せ。

(2)$Q_2$を$n$と$p$を用いて表せ。

(3)$0\lt x\lt 1$を満たす実数$x$に対して次式が

成り立つことを示せ。

$\dfrac{1}{(1-x)^2}=\displaystyle \sum_{k=0}^{\infty}(n+1)x^n$

必要ならば$0\lt x \lt 1$のとき

$\displaystyle \lim_{n\to\infty} nx^n=0$であることを

証明なしで使ってもよい。

(4)無限級数$\displaystyle \sum_{n=0}^{\infty} nQn$を$p$を用いて表せ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

$0\lt p\lt 1$とする。

表が出る確率が$p$、裏が出る確率が$1-p$である

$1$枚のコインを使って次のゲームを行う。

・ゲームの開始時点で点数は$0$点

・コインを投げ続け、表が出るごとに$1$点加算し、
 裏が出たときは点数はそのまま

・$2$回続けて裏が出たらゲームは終了。

$0$以上の整数$n$に対し、ゲームが終わったときに

$n$点となっている確率を$Q_n$とする。

(1)$Q_1,Q_2$を$p$を用いて表せ。

(2)$Q_2$を$n$と$p$を用いて表せ。

(3)$0\lt x\lt 1$を満たす実数$x$に対して次式が

成り立つことを示せ。

$\dfrac{1}{(1-x)^2}=\displaystyle \sum_{k=0}^{\infty}(n+1)x^n$

必要ならば$0\lt x \lt 1$のとき

$\displaystyle \lim_{n\to\infty} nx^n=0$であることを

証明なしで使ってもよい。

(4)無限級数$\displaystyle \sum_{n=0}^{\infty} nQn$を$p$を用いて表せ。

$2025$年東京科学大学(旧・東京工業大学)
理系過去問題
投稿日:2025.05.11

<関連動画>

数学「大学入試良問集」【4−4 組分け問題②】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
次の各問いに答えよ。
(1)
白色、赤色、橙色、黄色、緑色、青色、藍色、紫色の同じ大きさの球が1個ずつ全部で8個ある。
これらの8個の球を2個1組として4つに分ける。
このような分け方は全部で何通りあるか。

(2)
(1)の8個の球にさらに同じ大きさの白色の球2個を付けくわえる。
これらの10個の球を2個1組として5つに分ける。
このような分け方は全部で何通りあるか。
この動画を見る 

【理数個別の過去問解説】1999年度大阪大学 数学 理系前期第5問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
一片の長さが4の正方形の紙の表を、図のように一片の長さが1のマス目に16個に区切る。その紙を2枚用意し、AとBの2人に渡す。AとBはそれぞれ渡された紙の2個のマス目を無作為に選んで塗りつぶす。塗りつぶした後、両方の紙を表を上にしてどのように重ね合わせても、塗りつぶされたマス目がどれも重ならない確率を求めよう。ただし、2枚の紙を重ね合わせるときは、それぞれの紙を回転させてもよいが、紙の四隅は合わせることとする。
この動画を見る 

【数検2級】高校数学:数学検定2級2次:問題2

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#確率#数学検定#数学検定2級#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題2.(選択)
 nを0以上の整数とします。点P,Qは正四面体ABCDの頂点の上を,次の条件①,②に従って移動するものとします。
 ① 最初,点Pは頂点A,点Qは頂点Bにいる。
 ② 点Pと点Qは独立して1秒ごとに現在位置から他の3つの頂点のいずれかにそれぞれ1/3の確率で移動する。
 移動を始めてからn秒後に点Pと点Qが同じ頂点にいる確率をPnとするとき,P₁,P₂,P₃をそれぞれ求めなさい。
この動画を見る 

福田の数学〜立教大学2021年経済学部第1問(3)〜さいころの確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(3)3個のさいころを1回投げるとき、出た目の最大値が3となる確率は
$\boxed{エ}$であり、また、出た目の積が8となる確率は$\boxed{オ}$である。

2021立教大学経済学部過去問
この動画を見る 

【数A】場合の数:岐阜大学2008年

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#学校別大学入試過去問解説(数学)#岐阜大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
7個の文字FGGIIUUを横1列に並べる。次の問いに答えよ。
(1)『GIFU』という連続 した4文字が現れるように並べる方法は何通りあるか。
(2)『GI』と『FU』という 連続した2文字がともに現れ、少なくとも1つの『GI』が『FU』よりも左にあるよ うに並べる方法は何通りあるか。
この動画を見る 
PAGE TOP