大学入試問題#595「山口大学に初挑戦!」 山口大学(2014) #数列 - 質問解決D.B.(データベース)

大学入試問題#595「山口大学に初挑戦!」 山口大学(2014) #数列

問題文全文(内容文):
$a_n=\tan\displaystyle \frac{\pi}{2^{n+1}}$のとき
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{a_{n+1}}{a_n}$を求めよ

出典:2014年山口大学 入試問題
単元: #大学入試過去問(数学)#数列#漸化式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#山口大学#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a_n=\tan\displaystyle \frac{\pi}{2^{n+1}}$のとき
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{a_{n+1}}{a_n}$を求めよ

出典:2014年山口大学 入試問題
投稿日:2023.07.23

<関連動画>

大阪大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1$

$a_{n+1}\displaystyle \frac{na_n}{2+n(a_n+1)}$

一般項を求めよ

出典:大阪大学 過去問
この動画を見る 

部分分数分解を利用した数列の和(数B)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
以下を求めよ。
$\displaystyle \frac{1}{1・2}+\displaystyle \frac{1}{2・3}+\displaystyle \frac{1}{3・4}+…+\displaystyle \frac{1}{n(n+1)}=??$

$\displaystyle \frac{1}{1・3}+\displaystyle \frac{1}{3・5}+\displaystyle \frac{1}{5・7}+…+\displaystyle \frac{1}{(2n-1)(2n+1)}=??$
この動画を見る 

同志社 数列の和 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#同志社大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n=1,2,3…$
$a_{n}=\displaystyle \frac{4N+3}{n(n+1)(n+2)}=$
初項から第$n$項までの和を求めよ

出典:同志社大学 過去問
この動画を見る 

高知大(医)3項間漸化式

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=1,a_2=5,a_{n+2}=4a_{n+1}-3a_n-4$
の一般項$a_n$を求めよ.

高知大(医)過去問
この動画を見る 

福田のおもしろ数学414〜3辺の長さと内接円の直径で等差数列ができる三角形は直角三角形であることの証明

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

ある三角形の$3$辺の長さとその内接円の直径を

ある順序で並べると等差数列になるという。

この三角形が直角三角形であることを証明せよ。
   
この動画を見る 
PAGE TOP