大阪府立大 漸化式と数学的帰納法・合同式の基本問題 - 質問解決D.B.(データベース)

大阪府立大 漸化式と数学的帰納法・合同式の基本問題

問題文全文(内容文):
$ 3(a_n+1)+4^{2n-1}$は13の倍数であることを示せ.

大阪府立大(経済)過去問
単元: #大学入試過去問(数学)#漸化式#大阪府立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 3(a_n+1)+4^{2n-1}$は13の倍数であることを示せ.

大阪府立大(経済)過去問
投稿日:2022.05.03

<関連動画>

三乗根と漸化式(類)一橋:順天堂(医)

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$\alpha=\sqrt[3]{9+4\sqrt5},\beta=\sqrt[3]{9-4\sqrt5}$
$a_n=\alpha^{2n-1}+\beta^{2n-1}$である.
$a_{n+4}-a_n$が7の倍数であることを示せ.

一橋:順天堂(医)過去問
この動画を見る 

福田の数学〜東京理科大学2023年創域理工学部第1問(3)〜偶奇で定義の異なる漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)数列$\left\{a_n\right\}$は、$a_1$=$\displaystyle\frac{7}{5}$, $n$が偶数の時は$a_{n+1}$=$\displaystyle\frac{1+a_n}{2}$, $n$が奇数の時は$a_{n+1}$=$\displaystyle\frac{2+a_n}{2}$を満たすとする。このとき、$a_2$=$\frac{\boxed{\ \ ヘホ\ \ }}{\boxed{\ \ マミ\ \ }}$, $a_3$=$\frac{\boxed{\ \ ムメ\ \ }}{\boxed{\ \ モヤ\ \ }}$である。
さらに、自然数$k$に対して$a_{2k+1}$=$\boxed{\ \ ユ\ \ }$+$\frac{\boxed{\ \ ヨ\ \ }}{\boxed{\ \ ラ\ \ }}a_{2k-1}$となる。これを
$a_{2k+1}$-$\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }}$=$\frac{\boxed{\ \ レ\ \ }}{\boxed{\ \ ロ\ \ }}\left( a_{2k-1}-\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }} \right)$
と変形することにより、
$a_{2k-1}$=$\frac{1}{\boxed{\ \ ワヲ\ \ }}\left( \frac{\boxed{\ \ レ\ \ }}{\boxed{\ \ ロ\ \ }} \right)^{k-1}$+$\frac{\boxed{\ \ リ\ \ }}{\boxed{\ \ ル\ \ }}$
が得られる。また、
$a_{2k}$=$\frac{1}{\boxed{\ \ ンあ\ \ }}\left( \frac{\boxed{\ \ い\ \ }}{\boxed{\ \ う\ \ }} \right)^{k-1}$+$\frac{\boxed{\ \ え\ \ }}{\boxed{\ \ お\ \ }}$
も得られる。
この動画を見る 

一橋大 漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
同時に1個ずつ取り出して入れかえる.
n回後にAがA,Bである確率を求めよ.

2022一橋大過去問
この動画を見る 

香川大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#香川大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$S_{n}+na_{n}=1$
$a_{n},S_{n}$を$n$で表せ

出典:香川大学 過去問
この動画を見る 

福田の数学〜神戸大学2023年理系第3問〜確率の基本性質と数え上げ

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ nを2以上の整数とする。袋の中には1から2nまでの整数が1つずつ書いてある2n枚のカードが入っている。以下の問いに答えよ。
(1)この袋から同時に2枚のカードを取り出したとき、そのカードに書かれている数の和が偶数である確率を求めよ。
(2)この袋から同時に3枚のカードを取り出したとき、そのカードに書かれている数の和が偶数である確率を求めよ。
(3)この袋から同時に2枚のカードを取り出したとき、そのカードに書かれている数の和が2n+1以上である確率を求めよ。

2023神戸大学理系過去問
この動画を見る 
PAGE TOP