【順列と何が違うの!?】組合せを解説!〔現役塾講師解説、数学〕 - 質問解決D.B.(データベース)

【順列と何が違うの!?】組合せを解説!〔現役塾講師解説、数学〕

問題文全文(内容文):
数学1A
組合せ
男子4人、女子5人の中から5人の委員を選ぶ
①選び方は何通り
②男子2人、女子3人の選び方
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
数学1A
組合せ
男子4人、女子5人の中から5人の委員を選ぶ
①選び方は何通り
②男子2人、女子3人の選び方
投稿日:2023.03.21

<関連動画>

福田の数学〜九州大学2023年文系第4問PART2〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $w$を$x^3$=1 の虚数解のうち虚部が正であるものとする。さいころを繰り返し投げて、次の規則で4つの複素数0, 1, $w$, $w^2$を並べていくことにより、複素数の列$z_1$, $z_2$, $z_3$, ... を定める。
・$z_1$=0 とする。
・$z_k$まで定まった時、さいころを投げて、出た目を$t$とする。このとき$z_{k+1}$を以下のように定める。
・$z_k$=0 のとき、$z_{k+1}$=$w^t$ とする。
・$z_k$≠0, $t$=1, 2のとき、$z_{k+1}$=0 とする。
・$z_k$≠0, $t$=3のとき、$z_{k+1}$=$wz_k$ とする。
・$z_k$≠0, $t$=4のとき、$z_{k+1}$=$\bar{wz_k}$ とする。
・$z_k$≠0, $t$=5のとき、$z_{k+1}$=$z_k$ とする。
・$z_k$≠0, $t$=6のとき、$z_{k+1}$=$\bar{z_k}$ とする。
ここで複素数$z$に対し、$\bar{z}$は$z$と共役な複素数を表す。以下の問いに答えよ。
(1)$ω^2$=$\bar{ω}$であることを示せ。
(2)$z_n$=0となる確率を$n$の式で表せ。
(3)$z_3$=1, $z_3$=$ω$, $z_3$=$ω^2$となる確率をそれぞれ求めよ。
(4)$z_n$=1となる確率を$n$の式で表せ。

2023九州大学文系過去問
この動画を見る 

数学「大学入試良問集」【5−7 条件付き確率】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
甲、乙2人でそれぞれ勝つ確率が下の表で示されるゲームを続けて行う。
甲乙のどちらか一方が続けて2度ゲームに勝った時は試合を終了し、2度続けて勝ったものが勝者となる。
$\begin{array}{c|c|c|c|c|c}
& 第1回目のゲーム & 甲が勝ったゲーム & 乙が勝ったゲーム \\
\hline
甲の勝つ確率 & \displaystyle \frac{2}{3} & \displaystyle \frac{2}{3} & \displaystyle \frac{1}{5} \\
\hline
乙の勝つゲーム & \displaystyle \frac{1}{3} & \displaystyle \frac{1}{3} & \displaystyle \frac{4}{5}
\end{array}$

(1)
3回以内のゲームで試合が終了する確率を求めよ。

(2)
4回のゲームで試合が終了することが分かっている。
このとき、甲が勝者となっている確率を求めよ。
この動画を見る 

灘問!!懐かしいと感じるのは私だけ?2024

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
異なる5つのマスに黒石を1個ずつ置く
縦、横、斜めのうち少なくとも1列に3個の黒石が並ぶ並び方は全部で何通り?

2024灘中学校
この動画を見る 

硬貨を使って250円にする方法は何通り? 初芝富田林

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
10円,50円,100円の硬貨を使って250円にする方法は全部で何通り?
(1枚も使わない硬貨があってもよい)

2023初芝富田林高等学校
この動画を見る 

気付けば一瞬!!確率 2024早稲田佐賀

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
A,B,C,Dと書かれた4つのボールを無作為に横1列に並べるとき、AのボールがBのボールより右に来る確率を求めよ

2024早稲田佐賀高等学校
この動画を見る 
PAGE TOP