問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 曲線C:y=f(x) (0 \leqq x \lt 1)が次の条件を満たすとする。\\
・f(0)=0\\
・0 \lt x \lt 1のときf'(x) \gt 0\\
・0 \lt a \lt 1を満たすすべての実数aについて、曲線C上の点(a, f(a))\\
における接線と直線x=1との交点をQとするとき、PQ=1\\
この時以下の問いに答えよ。\\
(1)f'(x)を求めよ。\\
(2)\int_0^{\frac{1}{2}}(1-x)f'(x)dxの値を求めよ。\\
(3)曲線Cとx軸、直線x=1、直線y=f(\frac{1}{2})で囲まれた部分の面積を求めよ。\\
\end{eqnarray}
2022東京医科歯科大学理系過去問
\begin{eqnarray}
{\Large\boxed{3}}\ 曲線C:y=f(x) (0 \leqq x \lt 1)が次の条件を満たすとする。\\
・f(0)=0\\
・0 \lt x \lt 1のときf'(x) \gt 0\\
・0 \lt a \lt 1を満たすすべての実数aについて、曲線C上の点(a, f(a))\\
における接線と直線x=1との交点をQとするとき、PQ=1\\
この時以下の問いに答えよ。\\
(1)f'(x)を求めよ。\\
(2)\int_0^{\frac{1}{2}}(1-x)f'(x)dxの値を求めよ。\\
(3)曲線Cとx軸、直線x=1、直線y=f(\frac{1}{2})で囲まれた部分の面積を求めよ。\\
\end{eqnarray}
2022東京医科歯科大学理系過去問
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 曲線C:y=f(x) (0 \leqq x \lt 1)が次の条件を満たすとする。\\
・f(0)=0\\
・0 \lt x \lt 1のときf'(x) \gt 0\\
・0 \lt a \lt 1を満たすすべての実数aについて、曲線C上の点(a, f(a))\\
における接線と直線x=1との交点をQとするとき、PQ=1\\
この時以下の問いに答えよ。\\
(1)f'(x)を求めよ。\\
(2)\int_0^{\frac{1}{2}}(1-x)f'(x)dxの値を求めよ。\\
(3)曲線Cとx軸、直線x=1、直線y=f(\frac{1}{2})で囲まれた部分の面積を求めよ。\\
\end{eqnarray}
2022東京医科歯科大学理系過去問
\begin{eqnarray}
{\Large\boxed{3}}\ 曲線C:y=f(x) (0 \leqq x \lt 1)が次の条件を満たすとする。\\
・f(0)=0\\
・0 \lt x \lt 1のときf'(x) \gt 0\\
・0 \lt a \lt 1を満たすすべての実数aについて、曲線C上の点(a, f(a))\\
における接線と直線x=1との交点をQとするとき、PQ=1\\
この時以下の問いに答えよ。\\
(1)f'(x)を求めよ。\\
(2)\int_0^{\frac{1}{2}}(1-x)f'(x)dxの値を求めよ。\\
(3)曲線Cとx軸、直線x=1、直線y=f(\frac{1}{2})で囲まれた部分の面積を求めよ。\\
\end{eqnarray}
2022東京医科歯科大学理系過去問
投稿日:2022.05.24