福田のわかった数学〜高校2年生084〜三角関数(23)重要な変形(1) - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生084〜三角関数(23)重要な変形(1)

問題文全文(内容文):
数学$\textrm{II}$ 三角関数(23) 重要な変形(1)
$\triangle ABC$において
$\sin2A+\sin2B+\sin2C=4\sin A\sin B\sin C$
を証明せよ。
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(23) 重要な変形(1)
$\triangle ABC$において
$\sin2A+\sin2B+\sin2C=4\sin A\sin B\sin C$
を証明せよ。
投稿日:2021.12.06

<関連動画>

数Ⅲ頻出問題!確実に取れるようになっておこう!【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\triangle$ABCは条件$\angle B$=2,$\angle A,BC$=1を満たす三角形のうちで
面積が最大のものであるとする。
このとき、$cos\angle B$を求めよ。

京都大入試過去問
この動画を見る 

【数Ⅱ】三角関数:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは実数の定数とし、$0\leqq\theta\lt 2\pi$とする。次の2つの式を考える。
$8a\cos\theta- 8\cos2\theta=a^2+7$…①
$\sin\theta-\cos\theta\gt-1$…②
(1)a=1のとき、方程式①を解け。
(2)不等式②を 解け。
(3)(2)で求めた範囲に①の異なる解がちょうど3個存在するようなaの値の 範囲を求めよ。
この動画を見る 

【高校数学】 数Ⅱ-88 扇形の弧の長さと面積

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
半径r、中心角$\theta$の扇形は、
弧の長さ$ℓ$=①____、面積S=②____

◎次の扇形の弧の長さと面積を求めよう。

③半径が4、中心角が$\displaystyle \frac{π}{5}$

④半径が3、中心角が150°
この動画を見る 

【数Ⅱ】三角関数:方程式sin(θ+40°)=sinθ(ただし0°≦θ≦90°)をみたすθを求めよ。

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
方程式$\sin(\theta+40°)=\sin\theta$(ただし$0°\leqq\theta\leqq90°$)をみたす$\theta$を求めよ。
この動画を見る 

【高校数学】 数Ⅱ-105 三角関数を含む関数の最大・最小①

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数の最大値と最小値、およびそのときの$\theta$の値を求めよう。

①$y=2\sin \theta -5(\displaystyle \frac{π}{3}\leqq\theta\leqq\displaystyle \frac{7}{6}π)$

②$y=\sin(\theta-\displaystyle \frac{π}{3})(0\leqq\theta\leqq\displaystyle \frac{2}{3}π)$

③$y=\cos (2\theta-\displaystyle \frac{π}{3})(\displaystyle \frac{π}{4}\leqq\theta\leqq\displaystyle \frac{π}{2})$

④$y=2\cos(2\theta-\displaystyle \frac{π}{6})(\displaystyle \frac{π}{6}\leqq\theta\leqq\displaystyle \frac{π}{3})$
この動画を見る 
PAGE TOP