大学入試問題#163 信州大学(2004) 定積分 - 質問解決D.B.(データベース)

大学入試問題#163 信州大学(2004) 定積分

問題文全文(内容文):
$\displaystyle \int_{1}^{2}\displaystyle \frac{log\ x}{x^3}\ dx$

出典:2004年信州大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2}\displaystyle \frac{log\ x}{x^3}\ dx$

出典:2004年信州大学 入試問題
投稿日:2022.04.08

<関連動画>

福田の数学〜千葉大学2023年第7問〜三角関数と定積分の最大Part1

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#積分とその応用#定積分#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{7}$ 関数
$f(x)$=$\displaystyle\left|\cos x-\sqrt5\sin x-\frac{3\sqrt2}{2}\right|$
について、以下の問いに答えよ。
(1)$f(x)$の最大値を求めよ。
(2)$\displaystyle\int_0^{2\pi}f(x)dx$ を求めよ。
(3)$S(t)$=$\displaystyle\int_t^{t+\frac{\pi}{3}}f(x)dx$ とおく。このとき$S(t)$の最大値を求めよ。
この動画を見る 

福田の数学〜中央大学202理工学部第4問〜sin(x)のn乗の定積分と極限

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数の極限#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$n=1,2,3,\cdots$に対し、$\displaystyle I_n=\int_0^{\frac{\pi}{2}}\sin^nxdx$とおく。また、$\displaystyle I_0=\int_0^{\frac{\pi}{2}}1dx$とする。
(1) $(n+1)I_{n+1}=nI_{n-1}$を示せ。
(2) $nI_nI_{n-1}$を求めよ。
(3) $I_{n+1} < I_n$を示せ。
(4) 極限$\displaystyle \lim_{n \to\infty}nI_n^2$を求めよ。
この動画を見る 

数学「大学入試良問集」【19−3 f(sinx)と置換積分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$f(x)$が$0 \leqq x \leqq 1$で連続な関数であるとき
$\displaystyle \int_{0}^{\pi}xf(\sin\ x)dx=\displaystyle \frac{\pi}{2}\displaystyle \int_{0}^{\pi}f(\sin\ x)dx$
が成立することを示し、これを用いて$\displaystyle \int_{0}^{\pi}\displaystyle \frac{x\ \sin\ x}{3+\sin^2x}dx$を求めよ。
この動画を見る 

11大阪府教員採用試験(数学:2番 微積)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
2⃣
(1)$y=x^x(x>0)$
$\frac{dy}{dx}$を求めよ。
(2)$\displaystyle \lim_{ n \to \infty } \frac{1}{\sqrt n}( \frac{1}{\sqrt (n+1)} +\frac{1}{\sqrt (n+2)} + \cdots + \frac{1}{\sqrt (2n)} )$
この動画を見る 

大学入試問題#582「ガチンコでぶつかると危険」 東京帝国大学(1946) 不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{dx}{x-\sqrt{ x^2-1 }}$

出典:1946年東京帝国大学 入試問題
この動画を見る 
PAGE TOP