【数学】東大理科2022大問6ガチ解説!考え方から正解まで、思考プロセスをお見せします! - 質問解決D.B.(データベース)

【数学】東大理科2022大問6ガチ解説!考え方から正解まで、思考プロセスをお見せします!

問題文全文(内容文):
東大理系数学2022大問6
Oを原点とする座標平面上で考える。0以上の整数kに対して、vec(v_k)を
$\vec{v_k}=\left(\cos \left(\dfrac{2k\pi}{3}\right),\sin\left(\dfrac{2k\pi}{3}\right)\right)$
と定める。投げたとき表と裏がどちらも1/2の確率で出るコインをN回投げて座標平面上に点$X_0,X_1,X_2,…,X_N$を以下の規則(i)(ii)に従って定める。
(i)X_0はOにある。
(ii)nを1以上N以下の整数とする。$X_{n_1}$が定まったとし、$X_n$を次のように定める。
・n回目のコイン投げで表が出た場合、
$\vec{OX_n}=\vec{OX_(n-1)}+\vec{v_k}$
により$X_n$を定める。ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、$X_n$を$X_{n-1}$と定める。
(1)$N=8$とする。$X_8$がOにある確率を求めよ。
(2)$N=200$とする。$X_{200}$がOにあり、かつ、合計200回のコイン投げで表がちょうどr回出る確率を$p_r$とおく。ただし$0\leqq r\leqq 200$とする。$p_r$を求めよ。また$p_r$が最大となるrの値を求めよ。
チャプター:

00:00 kの条件の中で、表と裏を読み間違えた場合の問題
00:47 (1)解説
06:10 (2)解説

単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
東大理系数学2022大問6
Oを原点とする座標平面上で考える。0以上の整数kに対して、vec(v_k)を
$\vec{v_k}=\left(\cos \left(\dfrac{2k\pi}{3}\right),\sin\left(\dfrac{2k\pi}{3}\right)\right)$
と定める。投げたとき表と裏がどちらも1/2の確率で出るコインをN回投げて座標平面上に点$X_0,X_1,X_2,…,X_N$を以下の規則(i)(ii)に従って定める。
(i)X_0はOにある。
(ii)nを1以上N以下の整数とする。$X_{n_1}$が定まったとし、$X_n$を次のように定める。
・n回目のコイン投げで表が出た場合、
$\vec{OX_n}=\vec{OX_(n-1)}+\vec{v_k}$
により$X_n$を定める。ただし、kは1回目からn回目までのコイン投げで裏が出た回数とする。
・n回目のコイン投げで裏が出た場合、$X_n$を$X_{n-1}$と定める。
(1)$N=8$とする。$X_8$がOにある確率を求めよ。
(2)$N=200$とする。$X_{200}$がOにあり、かつ、合計200回のコイン投げで表がちょうどr回出る確率を$p_r$とおく。ただし$0\leqq r\leqq 200$とする。$p_r$を求めよ。また$p_r$が最大となるrの値を求めよ。
投稿日:2022.12.24

<関連動画>

大学入試問題#753「普通に超良問」 東京理科大学理工学部(1999) #積分方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(2x)=\displaystyle \int_{0}^{\pi} f(t) dt+K\ x\ \cos\ x$
$f'(\pi)=\displaystyle \frac{\pi}{2}$
を満たすとき、定数$K$の値と、関数$f(x)$を求めよ。

出典:1999年東京理科大学理工学部 入試問題
この動画を見る 

対数を用いて桁数を求める良問【数学 入試問題】【東京理科大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\log_{10}2=0.3010,\log_{10}3=0.4771$とする。
2^{36}は$□$桁の整数である。$3^n$が$□$桁の整数となる。
最小の自然数$n$は$□$であり、$2^{36}+6・3^{□}$は$□$桁の整数である。

東京理科大過去問
この動画を見る 

大学入試問題#587「落とせない問題」 京都大学(1960) #方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^3+x+2=0$のとき
$x^5-x$の値を求めよ

出典:1960年京都大学 入試問題
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年医学部第1問(1)〜絶対値の付いた方程式の解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(1)方程式$4||x|-1|=x+2$の解を全て求めると$x=\boxed{\ \ あ\ \ }$ となる。

2022慶應義塾大学医学部過去問
この動画を見る 

【頻出】あれを使う!落としてはいけない問題です【数学 入試問題】【茨城大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$21^{2015}$を400で割ったときの余りを求めよ。

茨城大過去問
この動画を見る 
PAGE TOP