整数問題の難問!2つの解法を紹介【一橋大学】【数学 入試問題】 - 質問解決D.B.(データベース)

整数問題の難問!2つの解法を紹介【一橋大学】【数学 入試問題】

問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2=yz+7 \\
y^2=zx+7 \\
z^2=xy+7
\end{array}
\right.
\end{eqnarray}$

整数$(x,y,z)$を求めよ.

一橋大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2=yz+7 \\
y^2=zx+7 \\
z^2=xy+7
\end{array}
\right.
\end{eqnarray}$

整数$(x,y,z)$を求めよ.

一橋大過去問
投稿日:2022.05.21

<関連動画>

慶應女子高 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8616$と$5844$を同じ自然数$n$で割ったら,割り切れずその余りが同じ$n$の最大値と
最小値を求めよ.

慶応女子過去問
この動画を見る 

高知大学 二次関数 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#2次関数#2次関数とグラフ#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$素数$f(x)=x^2+px+q$が次の条件を満たす

(ア)
ある実数$a$に対して$f(a) \lt 0$

(イ)
任意の整数$n$に対して$f(n) \geqq 0$

$f(x)$を求めよ

出典:高知大学 過去問
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型理系第1問(2)〜桁数の評価

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ (2)$(2・7・11・13)^{20}$の桁数は$\boxed{\ \ イ\ \ }$である。
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数である.これを解け.
$m^6+295=2^n$
この動画を見る 

図書館情報大 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{(3^n)}+1$は$3$で何回割り切ることができるか.

1991図書館情報大過去問
この動画を見る 
PAGE TOP