【高校数学】分数関数の漸近線とグラフの簡単な求め方! - 質問解決D.B.(データベース)

【高校数学】分数関数の漸近線とグラフの簡単な求め方!

問題文全文(内容文):
次の関数のグラフをかけ。また,その漸近線を求めよ。
$y=\dfrac{-2x–10}{x+3}$
チャプター:

0:00 問題確認
0:10 解説開始!
3:52 グラフを書いていく!

単元: #関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数のグラフをかけ。また,その漸近線を求めよ。
$y=\dfrac{-2x–10}{x+3}$
投稿日:2024.02.01

<関連動画>

【数Ⅲ】極限:無限等比級数の図形への応用問題

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材: #サクシード#サクシード数学Ⅲ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面上で、点Pが原点Oを出発してx軸方向の正の向きに1だけ進み、次にy軸の正の向きに$\dfrac{3}{4}$だけ進み、次にx軸の負の向きに$\left(\dfrac{3}{4}\right)^2$だけ進み、次にy軸の負の向きに$\left(\dfrac{3}{4}\right)^3$だけ進む。以下、このような運動を限りなく続けるとき、点Pが近付いていく点の座標を求めよ。
この動画を見る 

林俊介 語りかける東大数学

アイキャッチ画像
単元: #対数関数#関数と極限
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$n\in Z+$

$g(x):=\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{\cos(\pi x)+1}{2} (\vert x \vert \leq 1) \\
0 (\vert x \vert \gt 1)
\end{array}
\right.
\end{eqnarray}$

$f(x):$連続であり,$p,q \in R$

$\vert x\vert \leq \dfrac{1}{n}$でつねに$p\leq f(x)\leq q$
$p\leq n\dfrac{\displaystyle \int_{-1}^{1} g(nx) f(x) dx\leq q}{I}$を示せ.

(2)$h(x)=:\begin{eqnarray}
\left\{
\begin{array}{l}
-\dfrac{\pi}{2}\sin(\pi x) (\vert x\vert \leq 1) \\
0 (\vert x\vert \gt 1)
\end{array}
\right.
\end{eqnarray}$

次の極限を求めよ.

$\displaystyle \lim_{n\to\infty} n^2\displaystyle \int_{-1}^{1} h(nx)\log(1+e^{x+1})dx $

(1)$g(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{\cos(\pi x)+1}{2} (\vert x\vert \leq 1) \\
0 (\vert x\vert \gt 1)
\end{array}
\right.
\end{eqnarray}$

$p\leq n \displaystyle \int_{-1}^{1} g(nx) f(x)dx \leq q$

2015東大過去問
この動画を見る 

福田の数学〜九州大学2023年理系第2問〜数列の収束発散の判定

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $\alpha$を実数とする。数列$\left\{a_n\right\}$が
$a_1$=$\alpha$, $a_{n+1}$=|$a_n$-1|+$a_n$-1 (n=1,2,3,...)
で定められるとき、以下の問いに答えよ。
(1)$\alpha$≦1のとき、数列$\left\{a_n\right\}$の収束、発散を調べよ。
(2)$\alpha$>2のとき、数列$\left\{a_n\right\}$の収束、発散を調べよ。
(3)1<$\alpha$<$\frac{3}{2}$のとき、数列$\left\{a_n\right\}$の収束、発散を調べよ。
(4)$\frac{3}{2}≦\alpha$<2のとき、数列$\left\{a_n\right\}$の収束、発散を調べよ。

2023九州大学理系過去問
この動画を見る 

πをどうやって表しますか?

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
円周率の表し方解説動画です
この動画を見る 

福田のわかった数学〜高校3年生理系074〜平均値の定理(2)極限の問題

アイキャッチ画像
単元: #関数と極限#微分とその応用#関数の極限#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 平均値の定理(2)
極限値
$\lim_{x \to 0}\frac{e^x-e^{\sin x}}{x-\sin x}$
を求めよ。
この動画を見る 
PAGE TOP