数学「大学入試良問集」【12−5 3次関数と接線】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【12−5 3次関数と接線】を宇宙一わかりやすく

問題文全文(内容文):
3次曲線$C:y=x^3-4x$とその上の点$P(2,0)$について考える
点$P$で曲線$C$に接する直線が曲線$C$と交わる点を$Q$とする。
また$R$は、$P$と異なる曲線$C$上の点であって、そして直線$PR$は曲線$C$に点$R$で接するものとする。
このとき、次の各問いに答えよ。
(1)点$Q$の$x$座標を求めよ。
(2)点$R$の$x$座標を求めよ。
(3)直線$PR$と曲線$C$で囲まれた部分の面積を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
3次曲線$C:y=x^3-4x$とその上の点$P(2,0)$について考える
点$P$で曲線$C$に接する直線が曲線$C$と交わる点を$Q$とする。
また$R$は、$P$と異なる曲線$C$上の点であって、そして直線$PR$は曲線$C$に点$R$で接するものとする。
このとき、次の各問いに答えよ。
(1)点$Q$の$x$座標を求めよ。
(2)点$R$の$x$座標を求めよ。
(3)直線$PR$と曲線$C$で囲まれた部分の面積を求めよ。
投稿日:2021.05.24

<関連動画>

【理数個別の過去問解説】2016年度京都大学 数学 文系第1問解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#京都大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
京都大学(文系)2016年第1問
xy平面内の領域 $x²+y²≦2, |x|≦1$で,曲線$C:y=x³+x²-x $の上側にある部分の面積を求めよ。
この動画を見る 

琉球大 微分・積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#琉球大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
琉球大学過去問題
-2<a<2
$y=x^2+ax+1$に原点から引いた2本の接線の接点をP,Qとする。
(1)2つの接点P,Qの座標を求めよ。
(2)2本の接線と放物線で囲まれた図形の面積
この動画を見る 

【短時間でポイントチェック!!】定積分 面積③ 曲線と曲線で囲まれた面積〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$y=x^2-2,y=-x^2-2x+2$で囲まれた部分の面積は?
この動画を見る 

福田の数学〜上智大学2023年TEAP利用型文系第4問(3)〜線分の通過範囲の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ (3)$a$を定数とする。座標平面上の直線$y$=2$ax$+$\frac{1}{4}$と放物線$y$=$x^2$の2つの交点を$P_1$, $P_2$とする。$a$が0≦$a$≦1の範囲を動くとき、線分$P_1P_2$の通過する部分の面積は$\frac{\boxed{\ \ ル\ \ }}{\boxed{\ \ レ\ \ }}$である。
この動画を見る 

福田の数学〜早稲田大学2022年人間科学部第5問〜2次関数の区間の動く最大最小

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ aを実数とする。関数\hspace{260pt}\\
f(x)=-x^2+6x\hspace{30pt}(a-2 \leqq x \leqq a)\hspace{130pt}\\
の最大値をg(a)、最小値をh(a)とする。このとき、\hspace{140pt}\\
ab平面においてb=g(a)のグラフとa軸によって囲まれる部分の面積は\boxed{\ \ ア\ \ }であり、\\
ab平面においてb=h(a)のグラフとa軸によって囲まれる部分の面積は\boxed{\ \ イ\ \ }である。
\end{eqnarray}

2022早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP