シンガポール数学オリンピック整数問題の基本 - 質問解決D.B.(データベース)

シンガポール数学オリンピック整数問題の基本

問題文全文(内容文):
$P$は素数であり,$x,y$を自然数としたとき,
$x^3+y^3-3xy=p-1$をみたす$(x,y)$をすべて求めよ.

シンガポール数学オリンピック過去問
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$P$は素数であり,$x,y$を自然数としたとき,
$x^3+y^3-3xy=p-1$をみたす$(x,y)$をすべて求めよ.

シンガポール数学オリンピック過去問
投稿日:2023.05.09

<関連動画>

【数Ⅰ】【数と式】平方根の近似値 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\sqrt{2}=1.4142$, $\sqrt{3}=1.7321$
とするとき, 分母の有理化を利用して, 次の値を求めよ。
(1) $\dfrac{10}{\sqrt{3}+\sqrt{2}}$ (2) $\dfrac{1}{\sqrt{12}-\sqrt{2}}$


$x=1-\sqrt{5}$
のとき, 次の式の値を求めよ。

(1) $x^2-2x-4$ (2) $x^3-2x^2$
この動画を見る 

【高校数学】命題と条件の例題~基礎を固めよう~ 1-16.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
$x$は実数、$n$は自然数とする。次の命題の真偽を調べよ。
(a) $x \gt 1 \Rightarrow x \gt 0$
(b) $x \leqq -1 \Rightarrow |x| \gt 2$
(c) $|x| \leqq \Rightarrow |x-1| \lt 3$
(d) $n$は$18$の正の約数$\Rightarrow n$は$36$の正の約数

-----------------

2⃣
$x,y$は実数、$m$は整数とする。次の条件の否定を述べよ
(a) $x \neq 1$かつ$y = 4$
(b) $x \leqq 3$または$y \gt 7$
(c) $-1 \leqq x \lt -2$
(d) $m$は偶数または$3$の倍数である
(e) $x,y$はともに無理数である
この動画を見る 

質問への返答 因数分解 a^3+b^3+c^3-3abc

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^3+b^3+c^3-3abc$
この動画を見る 

絶対値だけど場合分け不要。4通りで解説。

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
方程式を解け
$|x|=|x-4|$
この動画を見る 

福田の一夜漬け数学〜2次関数・解の存在範囲(3)少なくとも1つ〜高校1年生

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#2次関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}} x^2+(2-m)x+4-2m=0$ が$-1 \lt x \lt 1$の範囲に少なくとも
1つ解をもつようなmの値の範囲を求めよ。

${\Large\boxed{2}} x^2+(2-m)x+4-2m=0$ が$-1 \leqq x \leqq 1$の範囲に少なくとも
1つ解をもつようなmの値の範囲を求めよ。

(数学$\textrm{II}$の内容)
${\Large\boxed{3}}$ 実数$m$が$1 \leqq m \leqq 3$の範囲を動くとき
直線$y=2mx+m^2$ の通過する範囲を図示せよ。
この動画を見る 
PAGE TOP