【数C】平面ベクトル:平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(1)s+t=4,s≧0,t≧0 - 質問解決D.B.(データベース)

【数C】平面ベクトル:平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(1)s+t=4,s≧0,t≧0

問題文全文(内容文):
平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(1)s+t=4,s≧0,t≧0
チャプター:

0:00 オープニング
0:05 問題文
0:18 問題解説、手順①(OAの係数をx、OBの係数をyとおく)
0:40 問題解説、手順②(s=x、t=yとして条件式をxとyの式に)
0:57 問題解説、手順③(②の条件式を図示する)
2:17 問題解説、手順④(y軸を斜めにして描き直す)
2:47 問題解説、手順⑤(OA'とOB'をそれぞれOAとOBで表す)
3:45 名言

単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(1)s+t=4,s≧0,t≧0
投稿日:2020.06.02

<関連動画>

【数C】30分でベクトルを総まとめしてみた【1.5倍速推奨 / 教科書レベル】

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数B】30分でベクトルを総まとめ動画です
-----------------
$\vec{ a }=(1,-2)$とのなす角が$45^{ \circ }$で、大きさが$\sqrt{ 10 }$のベクトルを求めよ。
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第2問〜位置ベクトルと面積比

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面上に三角形ABCと点Pがあり、点Pは、ある正の定数tに対して
$3t\overrightarrow{ AP }+t^2\overrightarrow{ BP }+4\overrightarrow{ CP }=\overrightarrow{ 0 }$
を満たすとする。
$\overrightarrow{ b } =\overrightarrow{ AB },\overrightarrow{ c } =\overrightarrow{ AC }$とおく。
(1)$\overrightarrow{ BP }$を、$\overrightarrow{ b }$と$\overrightarrow{ AP }$を用いて表せ。
(2)$\overrightarrow{ AP }=v\ \overrightarrow{ b }+w\ \overrightarrow{ c }$となる実数v,wを、tを用いて表せ。
(3)直線APと直線BCの交点をDとする。
$\overrightarrow{ AD }=x\ \overrightarrow{ b }+y\ \overrightarrow{ c }$となる実数x,yを、tを用いて表せ。
(4)$\frac{S_2}{S_1}$を、tを用いて表せ。
(5)tが正の実数全体を動くとき、$\frac{S_2}{S_1}$が最大となるtの値を求めよ。

2022東京理科大学理工学部過去問
この動画を見る 

【数C】【平面上のベクトル】ベクトルと図形1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学C#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題1
$△ABC$の辺$AB$,$BC$,$CA$を2:1に内分する点を、それぞれ$A_1$,$B1_1$,$C_1$とする。更に、$△A_1B_1C_1$の辺$A_1B_1$,$B_1C_1$を2:1に内分する点を、それぞれ$A_2$,$B_2$とする。このとき、$A_2B_2//AB$であることを示せ。

問題2
△ABCにおいて、辺BCを2:1に外分する点をP,辺ABを1:2に内分する点をQ、辺CAの中点をRとする。
(1)3点P,Q,Rは一直線上にあることを証明せよ。
(2)QR:QPを求めよ。

問題3
平行四辺形ABCDにおいて、辺ABを3:2に内分する点をP、対角線BDを2:5に内分する点をQとする。
(1)3点P,Q,Cは一直線上にあることを証明せよ。
(2)PQ:QCを求めよ。

問題4
△ABCにおいて、辺ABを1:2に内分する点をD、辺ACを3:1に内分する点をEとし、線分CD、BEの交点をPとする。$\overrightarrow{ AB }=\overrightarrow{ b }$,$\overrightarrow{ AC }=\overrightarrow{ c }$とするとき、$\overrightarrow{ AP }$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ。
この動画を見る 

【数B】ベクトル:ベクトルの基本⑯点の存在範囲を考える

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点の存在範囲を考える問題に関して解説していきます.
この動画を見る 

福田の1.5倍速演習〜合格する重要問題022〜一橋大学2016年度文系数学第5問〜ベクトルの絶対値の比の範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上のベクトル#解と判別式・解と係数の関係#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面上の2つのベクトル$\overrightarrow{ a }$と$\overrightarrow{ b }$は零ベクトルではなく、$\overrightarrow{ a }$と$\overrightarrow{ b }$のなす角度は
60°である。このとき
$r=\frac{|\overrightarrow{ a }+2\overrightarrow{ b }|}{|2\overrightarrow{ a }+\overrightarrow{ b }}$
のとりうる値の範囲を求めよ。

2016一橋大学文系過去問
この動画を見る 
PAGE TOP