【数B】平面ベクトル:平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(1)s+t=4,s≧0,t≧0 - 質問解決D.B.(データベース)

【数B】平面ベクトル:平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(1)s+t=4,s≧0,t≧0

問題文全文(内容文):
$\triangle OAB$に対して,点$P$が次の条件を満たしながら動くとき,点$P$の存在範囲を求めよ.

(1)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
(2)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
チャプター:

0:00 オープニング
0:05 問題文
0:18 問題解説、手順①(OAの係数をx、OBの係数をyとおく)
0:40 問題解説、手順②(s=x、t=yとして条件式をxとyの式に)
0:57 問題解説、手順③(②の条件式を図示する)
2:17 問題解説、手順④(y軸を斜めにして描き直す)
2:47 問題解説、手順⑤(OA'とOB'をそれぞれOAとOBで表す)
3:45 名言

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\triangle OAB$に対して,点$P$が次の条件を満たしながら動くとき,点$P$の存在範囲を求めよ.

(1)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
(2)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
投稿日:2020.06.02

<関連動画>

【数C】【ベクトルの内積】ベクトルa=(-1,7)と45°の角をなし, 大きさが5であるベクトルxを求めよ

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):

ベクトル$\vec{a}=(-1,7)$と
45°の角をなし,
大きさが5である
ベクトル$\vec{x}$を求めよ。
この動画を見る 

【数B】ベクトル:ベクトルの基本⑯点の存在範囲を考える

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点の存在範囲を考える問題に関して解説していきます.
この動画を見る 

福田の数学〜早稲田大学2021年社会科学部第2問〜ベクトルの図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ $\triangle OAB$において、辺$OA$を$1:1$に内分する点を$D$、辺$OB$を$2:1$に内分する点を$E$とする。線分$BD$と線分$AE$の交点を$F$、$\overrightarrow{ OA }=\overrightarrow{ a }$, $\overrightarrow{ OB }=\overrightarrow{ b }$,$\ |\overrightarrow{ a }|=a$,$ |\overrightarrow{ b }|=b$
として、次の問いに答えよ。
$(1)\overrightarrow{ OF }$を$\overrightarrow{ a }$ , $\overrightarrow{ b }$を用いて表せ。
さらに、$\overrightarrow{ a }・\overrightarrow{ OF }=\overrightarrow{ b }・\overrightarrow{ OF }$ として、以下の問いに答えよ。
$(2)$内積$\overrightarrow{ a }・\overrightarrow{ b }$を$a$, $b$を用いて表せ。
$(3)b=1$のとき、$a$の取りうる値の範囲を求めよ。
$(4)b=1$のとき、$\triangle OAB$の面積$S$の最大値と、そのときの$a$の値を求めよ。
この動画を見る 

【数B】ベクトル:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
四角形OABCは、$OB+3BC=2AB$を満たしている。また、辺OAを2:1に内分する点を Dとし、$a=OA、c=OC$とする。
(1)OBをa,cを用いて表せ。
(2)2直線$OB,CD$の交点をP とする。$OPwpa,c$を用いて表せ。また、$CP:PD$を求めよ。
(3)$OA=3、OB=\sqrt{15},OC=4$ とする。(i)内積a・cの値を求めよ。(ii)四角形OABCに、CとDが重なるように折 り目を付け、再び広げて四角形に戻す。折り目の直線lと直線OCの公転をNとする とき、$ON:NC$を求めよ。また、3直線$OB,OC,l$で囲まれてできる三角形の面積を求 めよ。
この動画を見る 

【高校数学】 数B-15 ベクトルの内積④

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$\overrightarrow{ a }=(k.k+1)、\overrightarrow{ b }=(6、-4)$が垂直となるように、kの値を定めよう。

②$\overrightarrow{ a }=(2、-1)$に垂直な単位ベクトルでを求めよう。

③$\overrightarrow{ a }=(\sqrt{ 3 }、1)$と30°の角をなす単位ベクトル$\overrightarrow{ e }$を求めよう。
この動画を見る 
PAGE TOP