高等学校入学試験予想問題:中央大学附属高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

高等学校入学試験予想問題:中央大学附属高等学校~全国入試問題解法

問題文全文(内容文):
次の各問いに答えよ.
$\boxed{1}$(1)
$ \dfrac{(2x^3z^4)^2}{5x^2y^3}\div \left(\dfrac{x^2z^3}{y}\right)\times \left(-\dfrac{10}{xy^2}\right)$
これを計算せよ.

(2)
$ (x+2)(3x+4)=5x^2+6x+7 $
これを解きなさい.

$\boxed{2}$
図のように,放物線$ y=x^2 $上に点$ A(-1,1)$がある.
$ OA=OP$となるように$ y $軸の正の部分に点$ P $をとる.
また,直線$ AP $と放物線$ y=x^2 $の点$ A $でない交点を$ B $とする.
このとき,次の問いに答えなさい.
(1)点$ P $の座標を求めなさい.

(2)点$ B $の座標を求めなさい.

(3)点$ B $を通って,直線$ OA $に平行な直線と$ y $軸との交点を$ C $とする.
$ \triangle OAP $の面積を$ S $とするとき,
$ \triangle ABC $の面積を$ S $を用いて表しなさい.

$ \boxed{3}$
$ k $番目が$ k $である数の列$ {1,2,3,・・・・・・}$の1番目から
$ n $番目までのすべての数の列の和を
$ \displaystyle \sum_{k=1}^{n}k $で表す.
式で表すと,$ \displaystyle \sum_{k=1}^{n}k=1+2+3+・・・+n$となる.
同様に,$ k $番目が$ k^2 $である数の列$ {1^2,2^2,3^2,・・・・・・}$の
1番目から$ n $番目までのすべての数の列の和を式で表すと,
$ \displaystyle \sum_{k=1}^{n}k^2=1^2+2^2+3^2+・・・+n^2 $となる.
$ \displaystyle \sum_{k=1}^{5}k^3 $を式で表しなさい.

中央大学附属高等学校予想問題
単元: #数学(中学生)#中央大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の各問いに答えよ.
$\boxed{1}$(1)
$ \dfrac{(2x^3z^4)^2}{5x^2y^3}\div \left(\dfrac{x^2z^3}{y}\right)\times \left(-\dfrac{10}{xy^2}\right)$
これを計算せよ.

(2)
$ (x+2)(3x+4)=5x^2+6x+7 $
これを解きなさい.

$\boxed{2}$
図のように,放物線$ y=x^2 $上に点$ A(-1,1)$がある.
$ OA=OP$となるように$ y $軸の正の部分に点$ P $をとる.
また,直線$ AP $と放物線$ y=x^2 $の点$ A $でない交点を$ B $とする.
このとき,次の問いに答えなさい.
(1)点$ P $の座標を求めなさい.

(2)点$ B $の座標を求めなさい.

(3)点$ B $を通って,直線$ OA $に平行な直線と$ y $軸との交点を$ C $とする.
$ \triangle OAP $の面積を$ S $とするとき,
$ \triangle ABC $の面積を$ S $を用いて表しなさい.

$ \boxed{3}$
$ k $番目が$ k $である数の列$ {1,2,3,・・・・・・}$の1番目から
$ n $番目までのすべての数の列の和を
$ \displaystyle \sum_{k=1}^{n}k $で表す.
式で表すと,$ \displaystyle \sum_{k=1}^{n}k=1+2+3+・・・+n$となる.
同様に,$ k $番目が$ k^2 $である数の列$ {1^2,2^2,3^2,・・・・・・}$の
1番目から$ n $番目までのすべての数の列の和を式で表すと,
$ \displaystyle \sum_{k=1}^{n}k^2=1^2+2^2+3^2+・・・+n^2 $となる.
$ \displaystyle \sum_{k=1}^{5}k^3 $を式で表しなさい.

中央大学附属高等学校予想問題
投稿日:2024.01.31

<関連動画>

【数式に翻訳せよ…!】整数:新潟県~全国入試問題解法

単元: #数学(中学生)#整数の性質#高校入試過去問(数学)#新潟県公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ある連続する自然数n,mについて、以下が成立するとき(n,m)を求めよ$
$n*m+55=n+m$
この動画を見る 

方程式立てずに解ける! 大阪教育大附属天王寺

アイキャッチ画像
単元: #数学(中学生)#中1数学#文章題#文章題その他#平面図形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
ある正方形の各辺の長さを1cmずつ短くすると面積が半分になった。
もとの正方形の一辺の長さは?

大阪教育大学附属高等学校天王寺校舎
この動画を見る 

【数学】中2-53 角度チャレンジ Lv.1

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$\angle x$の大きさをもとめよう!
※図は動画内参照
この動画を見る 

【中学数学】規則性の問題~高校受験対策~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中1数学#方程式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
n段n列のマス目に以下の規則にしたがって黒い石を置いていく。

【規則】
1段目と段目、1列目とn列目にあるすべてのマスに黒い石を1つずつ置く。
図は3段3列のマス目に、4段4列のマス目にこの規則にしたがって黒い石を置いたものである。

【問題】
1⃣
7段7列のマス目にこの規則にしたがって黒い石を置いたとき、置かれた黒い石の個数を求めよ。

2⃣
n段n列のマス目に、この規則にしたがって黒い石を置き、黒い石が置かれていない残りの
すべてのマスに白い石を1つずつ置きます。
白い石の個数が、黒い石の個数より41個多くなるときnの値を求めよ。

-----------------

動画内図1のようなタイルA,Bを動画内図2のようにすき間なく規則的に並べ、1番目の図形、
2番目の図形、3番目の図形、・・・とする。

1⃣
6番目の図形についてタイルBの枚数を求めよ。

2⃣
n番目の図形について、タイルAとタイルBの枚数の合計をnを使って表せ。

3⃣
タイルAとタイルBの枚数の合計が1861枚になるのは何番目の図形か。

-----------------

動画内図のように黒、白、赤のタイルを規則的に並べます。

1⃣
4番目のそれぞれの枚数を求めよ。

2⃣
n番目の白の枚数をnを使って表せ。

3⃣
すべての枚数が99枚になるのは何番目か求めよ。
この動画を見る 

【数学】中3-71 標本調査①(基本編)

アイキャッチ画像
単元: #数学(中学生)#中3数学#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
ある集団について何かを調べるとき、その集団のすべてについて調べることを①____といい、集団の一部をとり出して調べることを②____という。
②‗‗‗‗‗‗‗‗‗をするとき、何かを調べたい集団全体を③____
といい、とり出した一部の資料を④____という。
④‗‗‗‗‗‗‗‗‗を選ぶときは、⑤_____しなければならない。

◎ある市の中学生全体の勉強時間を調べるために、中学生500人を選んだ。

⑥母集団は?

⑦標本は?

⑧標本の大きさは?

⑨ある中学校で、全校生徒の勉強時間を調べるときに適切ではない標本の集め方はどれ?

$\boxed{ア}$全生徒からくじ引きで25人選ぶ。
$\boxed{イ}$全生徒に通し番号をつけ、乱数さいを使って25人選ぶ。
$\boxed{ウ}$3年2組の中から、無作為に、25人選ぶ。
この動画を見る 
PAGE TOP