高等学校入学試験予想問題:中央大学附属高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

高等学校入学試験予想問題:中央大学附属高等学校~全国入試問題解法

問題文全文(内容文):
次の各問いに答えよ.
$\boxed{1}$(1)
$ \dfrac{(2x^3z^4)^2}{5x^2y^3}\div \left(\dfrac{x^2z^3}{y}\right)\times \left(-\dfrac{10}{xy^2}\right)$
これを計算せよ.

(2)
$ (x+2)(3x+4)=5x^2+6x+7 $
これを解きなさい.

$\boxed{2}$
図のように,放物線$ y=x^2 $上に点$ A(-1,1)$がある.
$ OA=OP$となるように$ y $軸の正の部分に点$ P $をとる.
また,直線$ AP $と放物線$ y=x^2 $の点$ A $でない交点を$ B $とする.
このとき,次の問いに答えなさい.
(1)点$ P $の座標を求めなさい.

(2)点$ B $の座標を求めなさい.

(3)点$ B $を通って,直線$ OA $に平行な直線と$ y $軸との交点を$ C $とする.
$ \triangle OAP $の面積を$ S $とするとき,
$ \triangle ABC $の面積を$ S $を用いて表しなさい.

$ \boxed{3}$
$ k $番目が$ k $である数の列$ {1,2,3,・・・・・・}$の1番目から
$ n $番目までのすべての数の列の和を
$ \displaystyle \sum_{k=1}^{n}k $で表す.
式で表すと,$ \displaystyle \sum_{k=1}^{n}k=1+2+3+・・・+n$となる.
同様に,$ k $番目が$ k^2 $である数の列$ {1^2,2^2,3^2,・・・・・・}$の
1番目から$ n $番目までのすべての数の列の和を式で表すと,
$ \displaystyle \sum_{k=1}^{n}k^2=1^2+2^2+3^2+・・・+n^2 $となる.
$ \displaystyle \sum_{k=1}^{5}k^3 $を式で表しなさい.

中央大学附属高等学校予想問題
単元: #数学(中学生)#中央大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の各問いに答えよ.
$\boxed{1}$(1)
$ \dfrac{(2x^3z^4)^2}{5x^2y^3}\div \left(\dfrac{x^2z^3}{y}\right)\times \left(-\dfrac{10}{xy^2}\right)$
これを計算せよ.

(2)
$ (x+2)(3x+4)=5x^2+6x+7 $
これを解きなさい.

$\boxed{2}$
図のように,放物線$ y=x^2 $上に点$ A(-1,1)$がある.
$ OA=OP$となるように$ y $軸の正の部分に点$ P $をとる.
また,直線$ AP $と放物線$ y=x^2 $の点$ A $でない交点を$ B $とする.
このとき,次の問いに答えなさい.
(1)点$ P $の座標を求めなさい.

(2)点$ B $の座標を求めなさい.

(3)点$ B $を通って,直線$ OA $に平行な直線と$ y $軸との交点を$ C $とする.
$ \triangle OAP $の面積を$ S $とするとき,
$ \triangle ABC $の面積を$ S $を用いて表しなさい.

$ \boxed{3}$
$ k $番目が$ k $である数の列$ {1,2,3,・・・・・・}$の1番目から
$ n $番目までのすべての数の列の和を
$ \displaystyle \sum_{k=1}^{n}k $で表す.
式で表すと,$ \displaystyle \sum_{k=1}^{n}k=1+2+3+・・・+n$となる.
同様に,$ k $番目が$ k^2 $である数の列$ {1^2,2^2,3^2,・・・・・・}$の
1番目から$ n $番目までのすべての数の列の和を式で表すと,
$ \displaystyle \sum_{k=1}^{n}k^2=1^2+2^2+3^2+・・・+n^2 $となる.
$ \displaystyle \sum_{k=1}^{5}k^3 $を式で表しなさい.

中央大学附属高等学校予想問題
投稿日:2024.01.31

<関連動画>

平行四辺形が長方形に変身するための条件

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 数学を数楽に
問題文全文(内容文):
平行四辺形ABCDに▢の条件が加わると長方形になる
㋐AB=BC
㋑AC⊥BD
㋒AC=BD
㋓$\angle ABD = \angle CBD$
*図は動画内参照

栃木県
この動画を見る 

【中学数学】多項式:式の展開② 置きかえ・ひと工夫必要なパターンを紹介!(a+b+5)(a-b-5)の展開

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(a+b+5)(a-b-5)の展開
この動画を見る 

因数分解 東大寺学園

アイキャッチ画像
単元: #数学(中学生)#中3数学#式の計算(展開、因数分解)#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
因数分解せよ
$x^2-4x^2y^2+y^2z^2+2xyz$

東大寺学園高等学校
この動画を見る 

中2数学「逆と反例」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中2数学#三角形と四角形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中2~逆と反例~

「AならはBである」
例題 次のことがらの逆をいいなさい。また、それが正しいかどうか 答えなさい。正しくない場合は、反例を1つ示しなさい。

(1)X=2、y=-3ならばxy=-6である。

(2) 2直線について、ℓ∥mならば、同位角は等しい。

(3) 底辺が6cm、高さが3cmの三角形の面積は9㎠である。

※図は動画内参照
この動画を見る 

【テスト対策 中1】5章-1

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の$\Box$にあてはまることばや記号を書きなさい。

・2直線$AB、CD$が交わってできる角が直角のとき、
$AB$と$CD$は$\Box$であるといい、 ②$AB\Box CD$と表す。
また、2直線$\ell、m$が交わらないとき、$\ell$は$m$はといい、$AB \Box CD$と表す。

・図形の形と大きさを変えないで、位置だけを変えることを$\Box$という。

・平面上で、図形を一定の方向に、一定の長さだけずらすことを$\Box$といい、
このとき、対応する2点を結ぶ線分は、それぞれ$\Box$で長さが$\Box$。
この動画を見る 
PAGE TOP