高等学校入学試験予想問題:中央大学附属高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

高等学校入学試験予想問題:中央大学附属高等学校~全国入試問題解法

問題文全文(内容文):
次の各問いに答えよ.
$\boxed{1}$(1)
$ \dfrac{(2x^3z^4)^2}{5x^2y^3}\div \left(\dfrac{x^2z^3}{y}\right)\times \left(-\dfrac{10}{xy^2}\right)$
これを計算せよ.

(2)
$ (x+2)(3x+4)=5x^2+6x+7 $
これを解きなさい.

$\boxed{2}$
図のように,放物線$ y=x^2 $上に点$ A(-1,1)$がある.
$ OA=OP$となるように$ y $軸の正の部分に点$ P $をとる.
また,直線$ AP $と放物線$ y=x^2 $の点$ A $でない交点を$ B $とする.
このとき,次の問いに答えなさい.
(1)点$ P $の座標を求めなさい.

(2)点$ B $の座標を求めなさい.

(3)点$ B $を通って,直線$ OA $に平行な直線と$ y $軸との交点を$ C $とする.
$ \triangle OAP $の面積を$ S $とするとき,
$ \triangle ABC $の面積を$ S $を用いて表しなさい.

$ \boxed{3}$
$ k $番目が$ k $である数の列$ {1,2,3,・・・・・・}$の1番目から
$ n $番目までのすべての数の列の和を
$ \displaystyle \sum_{k=1}^{n}k $で表す.
式で表すと,$ \displaystyle \sum_{k=1}^{n}k=1+2+3+・・・+n$となる.
同様に,$ k $番目が$ k^2 $である数の列$ {1^2,2^2,3^2,・・・・・・}$の
1番目から$ n $番目までのすべての数の列の和を式で表すと,
$ \displaystyle \sum_{k=1}^{n}k^2=1^2+2^2+3^2+・・・+n^2 $となる.
$ \displaystyle \sum_{k=1}^{5}k^3 $を式で表しなさい.

中央大学附属高等学校予想問題
単元: #数学(中学生)#中央大学附属高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
次の各問いに答えよ.
$\boxed{1}$(1)
$ \dfrac{(2x^3z^4)^2}{5x^2y^3}\div \left(\dfrac{x^2z^3}{y}\right)\times \left(-\dfrac{10}{xy^2}\right)$
これを計算せよ.

(2)
$ (x+2)(3x+4)=5x^2+6x+7 $
これを解きなさい.

$\boxed{2}$
図のように,放物線$ y=x^2 $上に点$ A(-1,1)$がある.
$ OA=OP$となるように$ y $軸の正の部分に点$ P $をとる.
また,直線$ AP $と放物線$ y=x^2 $の点$ A $でない交点を$ B $とする.
このとき,次の問いに答えなさい.
(1)点$ P $の座標を求めなさい.

(2)点$ B $の座標を求めなさい.

(3)点$ B $を通って,直線$ OA $に平行な直線と$ y $軸との交点を$ C $とする.
$ \triangle OAP $の面積を$ S $とするとき,
$ \triangle ABC $の面積を$ S $を用いて表しなさい.

$ \boxed{3}$
$ k $番目が$ k $である数の列$ {1,2,3,・・・・・・}$の1番目から
$ n $番目までのすべての数の列の和を
$ \displaystyle \sum_{k=1}^{n}k $で表す.
式で表すと,$ \displaystyle \sum_{k=1}^{n}k=1+2+3+・・・+n$となる.
同様に,$ k $番目が$ k^2 $である数の列$ {1^2,2^2,3^2,・・・・・・}$の
1番目から$ n $番目までのすべての数の列の和を式で表すと,
$ \displaystyle \sum_{k=1}^{n}k^2=1^2+2^2+3^2+・・・+n^2 $となる.
$ \displaystyle \sum_{k=1}^{5}k^3 $を式で表しなさい.

中央大学附属高等学校予想問題
投稿日:2024.01.31

<関連動画>

【ただ一つ言えることは…】連立方程式:城北高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中2数学#連立方程式#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
連立方程式$\begin{eqnarray}
\left\{
\begin{array}{l}
\dfrac{1}{x-y}+\dfrac{2}{x+y}=\dfrac{5}{3} \\
\dfrac{2}{x-y}-\dfrac{1}{x+y}=\dfrac{5}{3}
\end{array}
\right.
\end{eqnarray}$
を解け.

城北高校過去問
この動画を見る 

こんな学校知ってる?

アイキャッチ画像
単元: #確率
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
面白い問題を出すマスコンという本の説明をします。
この動画を見る 

受験生よ。ここで差がつきますよ。芝浦工大柏 2022入試問題解説26問目

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#立体図形#体積・表面積・回転体・水量・変化のグラフ#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
直方体
PF=QH=1
四角形I-MPGQの体積=?

2022芝浦工業大学柏高等学校
この動画を見る 

【中学数学】文字式の利用~文章題を完璧に~【中1夏期講習③】

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
問1. 次の文章を文字を使って表せ。
(1)ある公園の面積が$a\,\rm{km^2}$である。このとき、その15%の面積が花壇である。花壇の面積
(2)$x$円の品物を3割引きで買ったときの代金
(3)1辺が$x\,\rm{cm}$の正三角形の周の長さ
(4)十の位の数を$x$、一の位の数を$y$としたときの、2桁の自然数

問2. 次の数量の関係を等式で表せ
(1)$x\,\rm{m}$のリボンを4人で等しく切り分けたとき、1人分のリボンは$y\,\rm{m}$だった
(2)ある数$a$を4倍してから1を引いた数は、$a$に8を足した数に等しい
(3)$500\,\rm{m}$の道のりを分速$x$ mで歩くと、$y$分かかった
(4)定価$a$円の品物の20%引きの値段は$b$円だった
この動画を見る 

【数学】中3-72 標本調査②(問題編)

アイキャッチ画像
単元: #数学(中学生)#中3数学#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①人口18000人のA市で、無作為に500人抽出し、「好きなラーメンの味」についてアンケート調査をした。
このとき、A市すべての人のうち、みそ味が好きな人は、およそ何人と推測される?
四捨五入して、百の位までもとめよう。
※表は動画内参照

②袋の中に白玉だけが大量に入っている。
そこに同じ大きさの赤玉30個を入れ、その中から50個を無作為に
抽出する。
これを数回調べると平均6個の赤玉が含まれていた。
袋の中の白玉はおよそ何個と推測される?
この動画を見る 
PAGE TOP