大学入試問題#429「誘導があってもよいような・・・」 小樽商科大学 #定積分 - 質問解決D.B.(データベース)

大学入試問題#429「誘導があってもよいような・・・」 小樽商科大学 #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{1} (1-x^2)^{\frac{5}{2}} dx$

出典:小樽商科大学
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#小樽商科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} (1-x^2)^{\frac{5}{2}} dx$

出典:小樽商科大学
投稿日:2023.01.21

<関連動画>

大学入試問題#776「シグマの気持ち」 横浜国立大学(1996)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to +\infty } \displaystyle \frac{1}{n}log\{\displaystyle \frac{n}{n}・\displaystyle \frac{n+2}{n}・\displaystyle \frac{n+4}{n}・・・\displaystyle \frac{n+2(n-1)}{n}\}$

出典:1996年横浜国立大学
この動画を見る 

【高校数学】宇都宮大学の積分の問題をその場で解説しながら解いてみた!毎日積分97日目~47都道府県制覇への道~【㊵栃木】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【宇都宮大学 2023】
関数$f(x)=|x-1|, g(x)=e^{-2x+1}$により定まる座標平面上の曲線$y=(f\circ g)(x)$を$C$とする。ただし、$e$は自然対数の底で$e=2.71828…$である。次の問いに答えよ。
(1) $(f\circ g)(0)$および$\displaystyle \lim_{x \to \infty}(f\circ g)(x)$を求めよ。
(2) 座標平面上に曲線$C$の概形を図示せよ。
(3) $\displaystyle \frac{1}{2}<t<1$を満たす実数$t$に対し、$\displaystyle F(t)=(f\circ g)(\frac{t}{2})+(f\circ g)(t)$と定める。$F(t)$の増減を調べ、極値およびそのときの$t$の値を求めよ。
(4) 曲線$C$と直線$\displaystyle l:y=\frac{1}{2}$で囲まれる部分の面積$S$を求めよ。
この動画を見る 

大学入試問題#796「解法は、ほぼ1択か」 #横浜国立大学(2024) #定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log\sqrt{ 3 }} \displaystyle \frac{e^{3x}+4e^{2x}+e^x}{e^{4x}+2e^{2x}+1}dx$

出典:2024年横浜国立大学
この動画を見る 

大学入試問題#882「解き方どうすべきか?」 #東京都市大学(2021) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#東京都市大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} log(x^3+x^2) dx$

出典:2021年東京都市大学
この動画を見る 

【数Ⅲ】区分求積法【グラフの面積とはなにか。和が積分になる驚きの仕組み】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
(1)$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \left(\dfrac{k^2}{n^3}+\dfrac{3k}{n^2}+\dfrac{1}{n} \right)$を求めよ.
(2)$\displaystyle \lim_{n \to \infty}\displaystyle \sum_{k=1}^n \dfrac{1}{2k+n}$を求めよ.
(3)$\displaystyle \lim_{n \to \infty}\displaystyle \sum_{k=n+1}^{3n}\dfrac{1}{\sqrt{kn}}$を求めよ.
この動画を見る 
PAGE TOP