ただの連立方程式 - 質問解決D.B.(データベース)

ただの連立方程式

問題文全文(内容文):
x,yは実数とする.
x^3+y^3=10,x^2+y^2=7,x+y=?$
これを解け.
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは実数とする.
x^3+y^3=10,x^2+y^2=7,x+y=?$
これを解け.
投稿日:2022.06.10

<関連動画>

連立方程式

アイキャッチ画像
単元: #連立方程式#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,z$は実数とする.これを解け.

これを解け.

$\begin{eqnarray}
\left\{
\begin{array}{l}
xy+x+y=1 \\
x^2y^2+x^2+y^2=31
\end{array}
\right.
\end{eqnarray}$
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第1問(5)〜解と係数の関係と式の値の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (5)iを虚数単位とし、\alpha=\frac{1-\sqrt3i}{4}とする。このとき、\hspace{80pt}\\
a,bを実数とする2次方程式x^2+ax+b=0の解の1つが\alphaであるならば、\\
a=\boxed{\ \ ア\ \ },\ b=\boxed{\ \ イ\ \ }\ である。\hspace{100pt}\\
また、f(x)=4x^4-3x^3+2x^2とするとき、f(\alpha)の値は\boxed{\ \ ウ\ \ }である。
\end{eqnarray}

2022慶應義塾大学看護医療学科過去問
この動画を見る 

東京都立大 複素数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#東京都立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\displaystyle \frac{\sqrt{ 3 }+i}{1+\sqrt{ 3 }i})^{10}=a_1+a_2i$

$(\displaystyle \frac{\sqrt{ 3 }-i}{1-\sqrt{ 3 }i})^{10}=b_1+b_2i$

(1)
$a_1,a_2,b_1,b_2$を求めよ

(2)
$A(a_1,a_2)$ $B(b_1,b_2)$
$\triangle OAB$の面積を求めよ

出典:2001年東京都立大学 過去問
この動画を見る 

慶應(医)三次方程式の解とΣ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$8x^3-6x+1=0$の3つの解を$\alpha,\beta,\delta$とする.これを解け.
$\displaystyle \sum_{n=0}^{\infty}(\alpha^n+\beta^n+\delta^n)$

1993慶應(医)
この動画を見る 

基本対称式 あれで出そうよ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
\alpha+\beta+\delta=1 \\
\alpha\beta+\beta\delta+\delta\alpha=2,
\alpha\beta\delta=3
\end{array}
\right.
\end{eqnarray}$
を満たすとき,
①$\dfrac{1}{\alpha^2}+\dfrac{1}{\beta^2}+\dfrac{1}{\delta^2}$
②$\dfrac{1}{\alpha^3}+\dfrac{1}{\beta^3}+\dfrac{1}{\delta^3}$の値を求めよ.
この動画を見る 
PAGE TOP