ただの連立方程式 - 質問解決D.B.(データベース)

ただの連立方程式

問題文全文(内容文):
x,yは実数とする.
x^3+y^3=10,x^2+y^2=7,x+y=?$
これを解け.
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは実数とする.
x^3+y^3=10,x^2+y^2=7,x+y=?$
これを解け.
投稿日:2022.06.10

<関連動画>

虚数係数二次方程式

アイキャッチ画像
単元: #複素数と方程式
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^2+\frac{1+(2-\sqrt{3})i}{2}z+\frac{\sqrt{3}+i}{2}=0$を解け
*この方程式の2解を解にもつ実数係数の4次方程式を作れ
この動画を見る 

【高校数学】 数Ⅱ-37 解と係数の関係④

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の2数を解とする2次方程式を1つ作ろう。ただし、係数は整数とする。

①$6.-3$

②$2+3i,2-3i$

◎和と積が次のようになる2数を求めよう。

③和が-5,積が3

④和が2,積が4
この動画を見る 

福田のわかった数学〜高校2年生067〜三角関数(6)三角方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(6) 三角方程式
次の三角方程式の一般解と$0 \leqq \theta \lt 2\pi$における解を求めよ。
$\cos4\theta=\sin(\theta+\frac{\pi}{4})$
この動画を見る 

早稲田大(政)方程式の実数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$-90^{ \circ } \lt \theta \lt 90^{ \circ }$
$(\sin \theta)x^2+2(\cos2\theta)x+cos2\theta=0$が少なくとも1つの実数解をもつような$\theta$の範囲を求めよ

出典:2001年早稲田大学 政治経済学部 過去問
この動画を見る 

福田の数学〜早稲田大学2022年教育学部第4問〜3次関数の増減と3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{4}}$自然数$a,b$に対し、3次関数$f_{a,b}(x),g_{a,b}(x)$を
$f_{a,b}(x)=x^3+3ax^2+3bx+8$
$g_{a,b}(x)=8x^3+3bx^2+3ax+1$
で定める。次の問いに答えよ。
(1)次の条件$(\textrm{I})(\textrm{II})$の両方を満たす自然数の組(a,b)
で$a+b \leqq 9$となるものを全て求めよ。
$(\textrm{I})f_{a,b}(x)$が極値をもつ
$(\textrm{II})g_{a,b}(x)$が極値をもつ
(2)3次方程式$f_{a,b}(x)=0$の3つの解が$\alpha,\beta,\gamma$であるとき
3次方程式$g_{a,b}(x)=0$の解を$\alpha,\beta,\gamma$で表せ。
(3)次の条件$(\textrm{III})$を満たす自然数の組$(a,b)$で$a+b \leqq 9$となるものを全て求めよ。
$(\textrm{III})$3次方程式$f_{a,b}(x)=0$が相異なる3つの実数解をもつ。

2022早稲田大学教育学部過去問
この動画を見る 
PAGE TOP