【数B】【確率分布と統計的な推測】正規分布5 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数B】【確率分布と統計的な推測】正規分布5 ※問題文は概要欄

問題文全文(内容文):
1000人の生徒に数学のテストを行ったところ、その成績は、平均48点,標準偏差15点であった。成績が正規分布に従うものとするとき、次の問いに答えよ。
(1) ある生徒の点数が78点以上である確率を求めよ。
(2) 78点以上の生徒は約何人いると考えられるか。
(3) 30点以下の生徒は約何人いると考えられるか。
チャプター:

0:00 OP
0:51 解説

単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
1000人の生徒に数学のテストを行ったところ、その成績は、平均48点,標準偏差15点であった。成績が正規分布に従うものとするとき、次の問いに答えよ。
(1) ある生徒の点数が78点以上である確率を求めよ。
(2) 78点以上の生徒は約何人いると考えられるか。
(3) 30点以下の生徒は約何人いると考えられるか。
投稿日:2025.02.07

<関連動画>

【数B】確率分布と統計的推測:大数の法則と中心極限定理の「主張」と「イメージ」とは?

アイキャッチ画像
単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大数の法則・中心極限定理を細かく解説!
統計学で大切な2つの概念を、イメージとともに暗記出来るような動画です!
この動画を見る 

【数B】確率分布:確率分布表から分散を求めよう!

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率変数Xが,X=0,1,2にあたる確率を1/6,1/3,1/2としたとき、分散V(X)の値
この動画を見る 

【数B】確率分布:母平均の推定、信頼区間とは??

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
母平均の推定、標準化と信頼度の関係は??信頼区間の公式までを説明します!
この動画を見る 

龍谷大 確率 三次関数

アイキャッチ画像
単元: #数A#場合の数と確率#確率#統計的な推測#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
白19個、赤1個からn個取り出す。
白がn個のときn2
赤が含まれていたら0点
特典の期待値が最大となるnを求めよ

出典:2006年龍谷大学 過去問
この動画を見る 

2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第5問〜確率分布と統計的な推測

アイキャッチ画像
単元: #大学入試過去問(数学)#確率分布と統計的な推測#確率分布#統計的な推測#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
5
ある市の市立図書館の利用状況について調査を行った。

(1)ある高校の生徒720人全員を対象に、ある1週間に市立図書館で借りた本の
冊数について調査を行った。
その結果、1冊も借りなかった生徒が612人、1冊借りた生徒が54人、
2冊借りた生徒が36人であり、3冊借りた生徒が18人であった。
4冊以上借りた生徒はいなかった。

この高校の生徒から1人を無作為に選んだ時、その生徒が借りた本の冊数
を表す確率変数をXとする。

このとき、Xの平均(期待値)はE(X)=        であり、X2の平均は
E(X2)=        である。よって、Xの標準偏差は
σ(X)=         である。

(2)市内の高校生全員を母集団とし、ある1週間に市立図書館を利用した生徒の
割合(母比率)をpとする。この母集団から600人を無作為に選んだ時、その
1週間に市立図書館を利用した生徒の数を確率変数Yで表す。

p=0.4のとき、Yの平均はE(Y)=    、標準偏差はσ(Y)=    
になる。ここで、Z=Y         とおくと、標本数600は
十分に大きいので、Zは近似的に標準正規分布に従う。このことを利用して、
Yが215以下となる確率を求めると、その確率は0.    になる。

また、p=0.2のとき、Yの平均は    1    倍、
標準偏差は        3倍である。

(3)市立図書館に利用者登録のある高校生全員を母集団とする。1回あたりの
利用時間(分)を表す確率変数をWとし、Wは母平均m,母標準偏差30の分布
に従うとする。この母集団から大きさnの標本W1,W2,,Wnを無作為に
抽出した。
利用時間が60分をどの程度超えるかについて調査するために
U1=W160, U2=W260, , Un=Wn60
とおくと、確率変数U1,U2,,Unの平均と標準偏差はそれぞれ
E(U1)=E(U2)==E(Un)=m    
σ(U1)=σ(U2)==σ(Un)=    
である。

ここで、t=m60として、tに対する信頼度95%の信頼区間を求めよう。
この母集団から無作為抽出された100人の生徒に対してU1,U2,,Um
値を調べたところ、その標本平均の値が50分であった。標本数は十分大きい
ことを利用して、この信頼区間を求めると
    .    t    .    
になる。

2020センター試験過去問
この動画を見る 
PAGE TOP preload imagepreload image