ずばずば約分できる問題【数学 入試問題】【奈良県立医大】 - 質問解決D.B.(データベース)

ずばずば約分できる問題【数学 入試問題】【奈良県立医大】

問題文全文(内容文):
$abc=n$のとき、
$\dfrac{3a}{ab+a+1}+\dfrac{3nb}{bc+nb+n}+\dfrac{3c}{ca+c+n}$の値を求めよ。
ただし、$a,b,c$はすべて正の実数。

奈良県立医大過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$abc=n$のとき、
$\dfrac{3a}{ab+a+1}+\dfrac{3nb}{bc+nb+n}+\dfrac{3c}{ca+c+n}$の値を求めよ。
ただし、$a,b,c$はすべて正の実数。

奈良県立医大過去問
投稿日:2022.05.18

<関連動画>

福田の数学〜京都大学2022年理系第4問〜四面体に関する証明と線分の長さの最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
四面体OABCが
$OA=4, OB=AB=BC=3, OC=AC=2\sqrt3$
を満たしているとする。Pを辺BC上の点とし、$\triangle OAP$の重心をGとする。
このとき、次の各問いに答えよ。
(1)$\overrightarrow{ PG } ∟ \overrightarrow{ OA }$を示せ。
(2)Pが辺BC上を動くとき、PGの最小値を求めよ。

2022京都大学理系過去問
この動画を見る 

分数の中に分数

アイキャッチ画像
単元: #数Ⅱ#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{\frac{3}{4}}{\frac{5}{6}}$
この動画を見る 

ε-δ論法 #2 f(x)=log x が連続

アイキャッチ画像
単元: #数Ⅱ#式と証明#指数関数と対数関数#対数関数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(x)=\log x\ (x\gt 0)$が連続であることを
$ε-δ$論法で示せ.
この動画を見る 

福井県立大 不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#福井県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は正の実数
$\displaystyle \frac{abc}{(ab+1)(bc+1)(ca+1)} \leqq \displaystyle \frac{1}{8}$を証明せよ
等号式立条件も証明せよ

出典:福井県立大学 過去問
この動画を見る 

茨城大 不等式の証明 (補)3数の相加相乗平均証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#茨城大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2+y^2+z^2 \geqq ax(y-z)$がすべての実数$x,y,z$について成り立つ実数$a$の範囲を求めよ

出典:2000年茨城大学 過去問
この動画を見る 
PAGE TOP