福田の数学〜立教大学2021年経済学部第3問〜直線の傾きと放物線との接線 - 質問解決D.B.(データベース)

福田の数学〜立教大学2021年経済学部第3問〜直線の傾きと放物線との接線

問題文全文(内容文):
${\Large\boxed{3}}$aを実数の定数とする。座標平面上の放物線$C:y=-x^2+ax-\frac{(a-2-\sqrt3)^2}{4}$, 
直線$l:y=(2+\sqrt3)x$がある。$l$と$x$軸のなす角を\$theta$とする。ただし$0 \lt \theta \lt \frac{\pi}{2}$とする。
このとき、次の各問いに答えよ。
(1)$C$と$l$の共有点のx座標をaを用いて表せ。
(2)$\tan\theta, \tan(\theta+\frac{\pi}{4}), \tan(\theta-\frac{\pi}{4})$の値をそれぞれ求めよ。
(3)y切片が2であり、lとのなす角が$\frac{\pi}{4}$である直線の方程式を全て求めよ。
(4)(3)で求めた直線のうち、傾きが負であるものを$m$とする。
$C$と$m$が接するときのaの値を求めよ。
また、そのとき、Cとmの接点の座標を求めよ。
(5)aを(4)で求めた値とするとき、$C,m$および$y$軸で囲まれた図形の面積を求めよ。

2021立教大学経済学部過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$aを実数の定数とする。座標平面上の放物線$C:y=-x^2+ax-\frac{(a-2-\sqrt3)^2}{4}$, 
直線$l:y=(2+\sqrt3)x$がある。$l$と$x$軸のなす角を\$theta$とする。ただし$0 \lt \theta \lt \frac{\pi}{2}$とする。
このとき、次の各問いに答えよ。
(1)$C$と$l$の共有点のx座標をaを用いて表せ。
(2)$\tan\theta, \tan(\theta+\frac{\pi}{4}), \tan(\theta-\frac{\pi}{4})$の値をそれぞれ求めよ。
(3)y切片が2であり、lとのなす角が$\frac{\pi}{4}$である直線の方程式を全て求めよ。
(4)(3)で求めた直線のうち、傾きが負であるものを$m$とする。
$C$と$m$が接するときのaの値を求めよ。
また、そのとき、Cとmの接点の座標を求めよ。
(5)aを(4)で求めた値とするとき、$C,m$および$y$軸で囲まれた図形の面積を求めよ。

2021立教大学経済学部過去問
投稿日:2021.10.17

<関連動画>

数学「大学入試良問集」【19−7 三角関数と置換積分】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#山形大学#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$t=\tan\displaystyle \frac{x}{2}$とおく。
このとき、次の各問いに答えよ。

(1)
$\displaystyle \frac{dt}{dx}$を$t$を用いて表せ。

(2)
$\cos\ x$を$t$を用いて表せ。

(3)
曲線$y=\displaystyle \frac{1}{\cos\ x}$と2直線$x=0,x=\displaystyle \frac{\pi}{3}$および$x$軸で囲まれた部分の面積$S$を求めよ。
この動画を見る 

福田の数学〜神戸大学2023年理系第5問〜媒介変数表示で表された曲線と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 媒介変数表示
$x$=$\sin t$, $y$=$\cos(t-\frac{\pi}{6})\sin t$ (0≦$t$≦$\pi$)
で表される曲線をCとする。以下の問いに答えよ。
(1)$\frac{dx}{dt}$=0 または $\frac{dy}{dt}$=0 となる$t$の値を求めよ。
(2)Cの概形を$xy$平面上に描け。
(3)Cの$y$≦0 の部分と$x$軸で囲まれた図形の面積を求めよ。

2023神戸大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第3問〜3次関数と接線

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$xy平面上に、xの関数
$f(x)=x^3+(a+4)x^2+(4a+6)x+4a+2$
のグラフ$y=f(x)$がある。$y=f(x)$が任意のaに対して
通る定点をP、点Pにおける接線が$y=f(x)$と交わる点をQとおく。
(1)点Pの座標は$\boxed{\ \ ツ\ \ }$であり、点Pにおける接線の方程式は$y=\boxed{\ \ テ\ \ }$である。
(2)$a=5$のとき、$y=f(x)$上の点における接線は、$x=\boxed{\ \ ト\ \ }$において傾きが
最小になる。
(3)$x=\boxed{\ \ ト\ \ }$において$f(x)$が極値をとるとき、$a=\boxed{\ \ ナ\ \ }$であり、
点$(\boxed{\ \ ト\ \ },f(\boxed{\ \ ト\ \ }))$を$S$とおくと、三角形SPQの面積は$\boxed{\ \ ニ\ \ }$である。

2021慶應義塾大学薬学部過去問
この動画を見る 

大学入試問題#328 金沢大学(2013) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#金沢大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \int_{0}^{\frac{1}{a}}e^{\sqrt{ ax }}dx$

出典:2013年金沢大学 入試問題
この動画を見る 

#電気通信大学(2017) #区分求積法 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: ますただ
問題文全文(内容文):
以下の区分求積法を解け
$\displaystyle \lim_{ n \to \infty } \displaystyle \sum_{k=1}^n \displaystyle \frac{k}{4n^2-3k^2}$

出典:2017年電気通信大学
この動画を見る 
PAGE TOP