問題文全文(内容文):
${\Large\boxed{3}}$aを実数の定数とする。座標平面上の放物線$C:y=-x^2+ax-\frac{(a-2-\sqrt3)^2}{4}$,
直線$l:y=(2+\sqrt3)x$がある。$l$と$x$軸のなす角を\$theta$とする。ただし$0 \lt \theta \lt \frac{\pi}{2}$とする。
このとき、次の各問いに答えよ。
(1)$C$と$l$の共有点のx座標をaを用いて表せ。
(2)$\tan\theta, \tan(\theta+\frac{\pi}{4}), \tan(\theta-\frac{\pi}{4})$の値をそれぞれ求めよ。
(3)y切片が2であり、lとのなす角が$\frac{\pi}{4}$である直線の方程式を全て求めよ。
(4)(3)で求めた直線のうち、傾きが負であるものを$m$とする。
$C$と$m$が接するときのaの値を求めよ。
また、そのとき、Cとmの接点の座標を求めよ。
(5)aを(4)で求めた値とするとき、$C,m$および$y$軸で囲まれた図形の面積を求めよ。
2021立教大学経済学部過去問
${\Large\boxed{3}}$aを実数の定数とする。座標平面上の放物線$C:y=-x^2+ax-\frac{(a-2-\sqrt3)^2}{4}$,
直線$l:y=(2+\sqrt3)x$がある。$l$と$x$軸のなす角を\$theta$とする。ただし$0 \lt \theta \lt \frac{\pi}{2}$とする。
このとき、次の各問いに答えよ。
(1)$C$と$l$の共有点のx座標をaを用いて表せ。
(2)$\tan\theta, \tan(\theta+\frac{\pi}{4}), \tan(\theta-\frac{\pi}{4})$の値をそれぞれ求めよ。
(3)y切片が2であり、lとのなす角が$\frac{\pi}{4}$である直線の方程式を全て求めよ。
(4)(3)で求めた直線のうち、傾きが負であるものを$m$とする。
$C$と$m$が接するときのaの値を求めよ。
また、そのとき、Cとmの接点の座標を求めよ。
(5)aを(4)で求めた値とするとき、$C,m$および$y$軸で囲まれた図形の面積を求めよ。
2021立教大学経済学部過去問
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$aを実数の定数とする。座標平面上の放物線$C:y=-x^2+ax-\frac{(a-2-\sqrt3)^2}{4}$,
直線$l:y=(2+\sqrt3)x$がある。$l$と$x$軸のなす角を\$theta$とする。ただし$0 \lt \theta \lt \frac{\pi}{2}$とする。
このとき、次の各問いに答えよ。
(1)$C$と$l$の共有点のx座標をaを用いて表せ。
(2)$\tan\theta, \tan(\theta+\frac{\pi}{4}), \tan(\theta-\frac{\pi}{4})$の値をそれぞれ求めよ。
(3)y切片が2であり、lとのなす角が$\frac{\pi}{4}$である直線の方程式を全て求めよ。
(4)(3)で求めた直線のうち、傾きが負であるものを$m$とする。
$C$と$m$が接するときのaの値を求めよ。
また、そのとき、Cとmの接点の座標を求めよ。
(5)aを(4)で求めた値とするとき、$C,m$および$y$軸で囲まれた図形の面積を求めよ。
2021立教大学経済学部過去問
${\Large\boxed{3}}$aを実数の定数とする。座標平面上の放物線$C:y=-x^2+ax-\frac{(a-2-\sqrt3)^2}{4}$,
直線$l:y=(2+\sqrt3)x$がある。$l$と$x$軸のなす角を\$theta$とする。ただし$0 \lt \theta \lt \frac{\pi}{2}$とする。
このとき、次の各問いに答えよ。
(1)$C$と$l$の共有点のx座標をaを用いて表せ。
(2)$\tan\theta, \tan(\theta+\frac{\pi}{4}), \tan(\theta-\frac{\pi}{4})$の値をそれぞれ求めよ。
(3)y切片が2であり、lとのなす角が$\frac{\pi}{4}$である直線の方程式を全て求めよ。
(4)(3)で求めた直線のうち、傾きが負であるものを$m$とする。
$C$と$m$が接するときのaの値を求めよ。
また、そのとき、Cとmの接点の座標を求めよ。
(5)aを(4)で求めた値とするとき、$C,m$および$y$軸で囲まれた図形の面積を求めよ。
2021立教大学経済学部過去問
投稿日:2021.10.17