福田のわかった数学〜高校1年生072〜場合の数(11)組み分け - 質問解決D.B.(データベース)

福田のわかった数学〜高校1年生072〜場合の数(11)組み分け

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(11) 組み分け\\
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。\\
\begin{array}{|c|c|c|c|c|}
\hline
      & 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
      & 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(11) 組み分け\\
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。\\
\begin{array}{|c|c|c|c|c|}
\hline
      & 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
      & 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
投稿日:2021.10.30

<関連動画>

福田の数学〜京都大学2022年理系第2問〜連続しない自然数を選ぶ確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 箱の中に1からnまでの番号の付いたn枚の札がある。ただし、n \geqq 5とし、\\
同じ番号の札はないとする。この箱から3枚の札を同時に取り出し、札の番号を\\
小さい順にX,Y,Zとする。このとき、Y-X \geqq 2かつZ-Y \geqq 2となる確率を\\
求めよ。
\end{eqnarray}
この動画を見る 

確率 4STEP数A 136 確率の乗法定理【烈’s study!がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率
指導講師: 理数個別チャンネル
問題文全文(内容文):
箱Aには赤玉3個と白玉2個、箱Bには赤玉と白玉2個ずつ入っている。
(1)箱Aから玉を1個取り出し、それを箱Bに入れた後、箱Bから玉を1個取り出すとき、それが赤玉である確率を求めよ。
(2)箱Aから玉を2個取り出し、それを箱Bに入れた後、箱Bから玉を2個同時に取り出すとき、それらが2個とも赤玉である確率を求めよ。
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題3。プレゼントの交換の確率の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第3問\ 複数人がそれぞれプレゼントを一つずつ持ち寄り、交換会を開く。ただし、プレゼントは\\
全て異なるとする。\\
プレゼントの交換は次の手順で行う。\\
手順:外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、\\
各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中の\\
プレゼントを受け取る。\\
\\
交換の結果、1人でも自分の持参したプレゼントを受け取った場合は、交換をやり直す。\\
そして、全員が自分以外の人の持参したプレゼントを受け取ったところで交換会を終了する。\\
(1)2人または3人で交換会を開く場合を考える。\\
(\textrm{i})2人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は\\
\boxed{\ \ ア\ \ }通りある。したがって1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }}である。\\
(\textrm{ii})3人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は\\
\boxed{\ \ エ\ \ }通りある。したがって1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}である。\\
(\textrm{iii})3人で交換会を開く場合、4回以下の交換で交換会が終了する確率は\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケコ\ \ }}である。\\
\\
\\
(2)4人で交換会を開く場合、1回目の交換で交換会が終了する確率を\\
次の構想に基づいて求めてみよう。\\
構想:1回目の交換で交換会が終了しないプレゼントの受け取り方の総数を求める。\\
そのために、自分の持参したプレゼントを受け取る人数によって場合分けをする。\\
\\
1回目の交換で、4人のうち、ちょうど1人が自分の持参したプレゼントを受け取る場合は\\
\boxed{\ \ サ\ \ }通りあり、ちょうど2人が自分のプレゼントを受け取る場合は\boxed{\ \ シ\ \ }通りある。\\
このように考えていくと、1回目のプレゼントの受け取り方のうち、1回目の交換で交換会が\\
終了しない受け取り方の総数は\boxed{\ \ スセ\ \ }である。\\
したがって、1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}である。\\
\\
(3)5人で交換会を開く場合、1回目の交換で交換会が終了する確率は\frac{\boxed{\ \ チツ\ \ }}{\boxed{\ \ テト\ \ }}である。\\
\\
(4)A,B,C,D,Eの5人が交換会を開く。1回目の交換でA,B,C,Dがそれぞれ自分以外\\
の人の持参したプレゼントを受け取った時、その回で交換会が終了する\\
条件付き確率は\frac{\boxed{\ \ ナニ\ \ }}{\boxed{\ \ ヌネ\ \ }}である。\\
\end{eqnarray}
この動画を見る 

場合の数と確率 4STEP数A 120,121 確率基本⑥【教えて鈴木先生がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅰ+AのB問題解説(新課程2022年以降)#場合の数と確率
指導講師: 理数個別チャンネル
問題文全文(内容文):
120 ある製品が大量にあり、工場Aで製造したものと工場Bで製造したものが3:7の割合で混ざっている。この中から無造作に3個の製品を取り出すとき、次の確率を求めよ。
(1) Aの製品が2個の確率
(2)  Aの製品が1個または3個の確率
121 右図のような碁盤の目の道路がある。甲乙2人が、それぞれA地点、B地点を同時に出発し、甲はBに、乙はAに向かって同じ速さで進むものとする。ただし、2人とも最短距離を選ぶものとし、2通りの選び方のある交差点では、どちらかを選ぶかは 1/2 の書くいr津であるものとする。
(1) 甲がC地点を通る確率
(2) 甲乙がCD間ですれちがう確率
この動画を見る 

福田の数学〜慶應義塾大学2022年総合政策学部第6問〜新型ウィルス感染拡大による休業要請と補償金の期待値

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{6}}\ 新型ウイルスの感染拡大にともなって、ある国の自治体がある飲食店に1ヵ月間\\
の休業要請を行い、もし飲食店が要請に応じた場合、自治体は飲食店に補償金を\\
払うことになったものとする。いま、この飲食店は補償金が90万円以上であれば\\
要請に応じ、90万円未満なら要請に応じないものとする。補償金の額をC万円と\\
したとき、(C-90)万円を飲食店の超過利益と呼ぶことにする。もしC \lt 90\\
であれば、飲食店は要請に応じず、超過利益は0万円とする。\\
また、この自治体は支払うことのできる補償金の上限が定まっていて、それがD万円\\
(D \geqq C)であったとき、飲食店がC万円で要請に応じた場合、(D-C)万円は\\
補償金の節約分となる。ただし、飲食店が要請に応じなかった場合には、補償金の\\
節約分は0万円とする。\\
(1)まず、自治体が飲食店に休業要請する場合の補償金の額C万円を提示する場合\\
について考える。いま、自治体の補償金の上限が125万円であったとき、自治体\\
の補償金の節約分が最も大きくなるのはC=\boxed{\ \ アイウ\ \ }\ 万円の場合である。\\
(2)次に、飲食店が自治体に休業要請し、自治体が申請を受理した場合に、飲食店\\
は休業と引き替えに補償金を受け取ることができる場合について考える。なお、\\
飲食店は休業申請をする際に90万円以上の補償金の額を自治体に提示するもの\\
とする。また、ここでは自治体が支払うことができる補償金の上限については、\\
125万円か150万円か175万円のどれかに定まっているが公表されておらず、\\
飲食店は125万円である確率が\frac{2}{5}、150万円である確率が\frac{1}{5}、175万円である\\
確率が\frac{2}{5}であると予想しているものとする。\\
ただし、飲食店が提示した補償金の額が、実際に自治体が支払うことができる上限\\
を超えていた場合、自治体は申請を受理せず、そのときの補償金の節約分は0万円\\
になり、申請が受理されなければ、飲食店は休業せず、超過利益は0万円になる。\\
たとえば、飲食店が休業申請をする際にC=160万円を提示した場合、飲食店\\
の超過利益(の期待値)は\boxed{\ \ エオカ\ \ }\ 万円となる。\\
そこで、飲食店が超過利益(の期待値)を最も大きくする補償金の額を休業申請\\
の際に自治体に提示したとすると\\
(\textrm{a})飲食店の超過利益(の期待値)は\boxed{\ \ キクケ\ \ }\ 万円であり、\\
(\textrm{b})自治体の補償金の上限が実際は125万円であった場合、補償金の節約分は\\
\boxed{\ \ コサシ\ \ }\ 万円。\\
(\textrm{c})自治体の補償金の上限が実際は175万円であった場合、補償金の節約分は\\
\boxed{\ \ スセソ\ \ }\ 万円。\\
\end{eqnarray}
この動画を見る 
PAGE TOP