福田のわかった数学〜高校1年生072〜場合の数(11)組み分け - 質問解決D.B.(データベース)

福田のわかった数学〜高校1年生072〜場合の数(11)組み分け

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(11) 組み分け\\
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。\\
\begin{array}{|c|c|c|c|c|}
\hline
      & 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
      & 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{I} 場合の数(11) 組み分け\\
6個の玉を3個の箱に入れる方法は次の各場合に何通りあるか。\\
\begin{array}{|c|c|c|c|c|}
\hline
      & 玉に区別なし & 玉に区別なし & 玉に区別あり &玉に区別あり\\
      & 箱に区別なし & 箱に区別あり & 箱に区別なし &箱に区別あり\\
\hline
空箱可 & (1) & (3) & (5) & (7)\\
\hline
空箱不可 & (2) & (4) & (6) & (8)\\
\hline
\end{array}
\end{eqnarray}
投稿日:2021.10.30

<関連動画>

東大 場合の数 高校数学 Japanese university entrance exam questions Tokyo University

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#場合の数#場合の数#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを正の整数とし、n個のボールを3つの箱に分けて入れる問題を考える。ただし、1個のボ ールも入らない箱があってもよいものとする。以下に述べる4つの場合について、それぞれ 相異なる入れ方の総数を求めたい。

(1) 1からnまで異なる番号のついたこのボールを、A、B、Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(2)互いに区別のつかないn個のボールを、A、B、Cと区別された3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(3) 1からnまで異なる番号のついたn個のボールを、区別のつかない3つの箱に入れる場合、その入れ方は全部で何通りあるか。

(4)nが6の倍数6mであるとき、n個の互いに区別のつかないボールを、区別のつかない3つ の箱に入れる場合、その入れ方は全部で何通りあるか。
この動画を見る 

【数学】イッパツ理解!確率の「P」と「C」の使い分け!~全国模試1位の勉強法【篠原好】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
イッパツ理解!
数学の「確率の「P」と「C」の使い分け」についてお話しています。
この動画を見る 

福田の数学〜慶應義塾大学2021年経済学部第2問〜色々な条件付き確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 1個のさいころを繰り返し投げ、出た目の数により以下の(\textrm{a}),(\textrm{b})に従い得点を定める。\\
(\textrm{a})最初から10回連続して1の目が出た場合には、10回目で投げ終えて、\\
得点を0点とする。\\
(\textrm{b})mを0 \leqq m \leqq 9を満たす整数とする。最初からm回連続して1の目が出て\\
かつm+1回目に初めて1以外の目nが出た場合には、続けてさらにn回\\
投げたところで投げ終えて、1回目からm+n+1回目までに出た目の合計\\
を得点とする。ただし、最初から1以外の目が出た場合にはm=0とする。\\
\\
(1)得点が49点であるとする。このとき、n=\boxed{\ \ ア\ \ }となり、mの取り得る値の範囲\\
は\boxed{\ \ イ\ \ } \leqq m \leqq \boxed{\ \ ウ\ \ }であり、得点が49点となる確率は\frac{\boxed{\ \ エオ\ \ }}{6^{16}}である。また、得点が\\
49点で、さいころを投げる回数が15回以上である確率は\frac{\boxed{\ \ カキ\ \ }}{6^{16}}となる。さらに\\
得点が49点である条件のもとで、さいころを投げる回数が14回以下である\\
条件付き確率は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コサ\ \ }}となる。\\
\\
(2)さいころを投げる回数が15回以上である確率は\frac{\boxed{\ \ シ\ \ }}{6^{10}}となる。ゆえに、さいころを\\
投げる回数が14回以下である条件のもとで、得点が49点となる条件付き確率\\
は、k=\boxed{\ \ ス\ \ }とおいて\frac{1}{6^k(6^{10}-\boxed{\ \ セ\ \ })}となる。\\
\\
(3)得点が正の数で、かつ、さいころを投げる回数が14回以下である条件のもとで、\\
得点が49点となる条件付き確率はl=\boxed{\ \ ソ\ \ }とおいて\frac{1}{6^l(6^{10}-\boxed{\ \ タ\ \ })}となる。\\
\end{eqnarray}

2021慶應義塾大学経済学部過去問
この動画を見る 

場合の数と確率 確率基本①【教えて鈴木先生がていねいに解説】

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
A,B,C,D,E,F,G,Hの8文字を無造作に1列に並べるとき、次のようになる確率を求めよ。
(1)両端がA,Bである。
(2)A,Bが隣り合う。
(3)AはBより左に、BはCより左にある。

男子6人、女子2人がくじ引きで席を決めて円卓を囲んで座るとき、次のようになる確率を求めよ。
(1)女子2人が隣り合う。
(2)女子2人が向かい合う。

A,B,C,Dの4人がじゃんけんを1回するとき、次の確率を求めよ。
(1)Aだけが勝つ確率
(2)1人だけが勝つ確率

3つのさいころを同時に投げるとき、次のような目が出る確率を求めよ。
(1)目の積が150
(2)目の積が18
(3)目の積が135以上
この動画を見る 

【高校数学】条件付き確率例題~これはできなヤバイ~ 2-8.5【数学A】

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
1⃣
男子46人,女子54人に試験を行ったところ、男子の合格者は30人、
女子の合格者は36人であった。
この100人の中から1人を選ぶとき次の確率を求めよ。
(a) 選んだ1人が女子であったとき、その人が合格している確率
(b) 選んだ1人が不合格者であったとき、その人が男子である確率

-----------------

2⃣
ある試行における事象$A,B$について、$P(A \cap B)=0.4,P(A)=0.8,P(B)=0.5$のとき
$P_{A}(B) P_{B}(A)$を求めよ。

-----------------

3⃣
8本のくじの中に当たりが3本ある。引いたくじをもとに戻さないで
A、Bの2人がこの順に1本ずつ引くとき、次の確率を求めよ。
(a) Aが当たり、Bがはずれる確率
(b) 2人とも当たる確率
(c) Bが当たる確率
(d) 1人だけが当たる確率
この動画を見る 
PAGE TOP