福井大 微分積分いい気分 - 質問解決D.B.(データベース)

福井大 微分積分いい気分

問題文全文(内容文):
2016福井大学過去問題
$f(x)=x^3,g(x)=x^3-4$
①f(x),g(x)の両方と接する直線l
②g(x)とlとで囲まれる面積
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#面積、体積#数学(高校生)#福井大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2016福井大学過去問題
$f(x)=x^3,g(x)=x^3-4$
①f(x),g(x)の両方と接する直線l
②g(x)とlとで囲まれる面積
投稿日:2023.08.01

<関連動画>

福田のおもしろ数学238〜4つの放物線で囲まれた図形の面積

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積
指導講師: 福田次郎
問題文全文(内容文):
一辺 $2$ の正方形内の4つの放物線に囲まれた図形 (※図は動画内参照) の面積は?
この動画を見る 

17兵庫県教員採用試験(数学:3番 微積)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#接線と増減表・最大値・最小値#その他#不定積分・定積分#面積、体積#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
3⃣
$l_1:y=kx+2k$ $(k \in \mathbb{ R })$
$l_2:y=x^3-3x+2$
(1)$l_2$の極値
(2)k=0,$l_1$と$l_2$で囲まれた面積
(3)$l_1$と$l_2$が3点で交わるkの範囲
(4)$l_1$が$l_2$の変曲点を通るとき$l_1$と$l_2$で囲まれた面積
この動画を見る 

【高校数学】数Ⅱ:微分法と積分法:定積分と面積:1/6公式を用いて曲線で囲まれた図形の面積を求める!【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線または直線で囲まれた図形の面積Sを求めよ。
$y=x^2+3x,y=-x^2-x+6$
この動画を見る 

福田の数学〜明治大学2022年理工学部第3問〜平行六面体の対角線を軸とした回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#微分法と積分法#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
右の図(※動画参照)のような平行六面体OABC-DEFGにおいて、
すべての辺の長さは1であり、$\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }$のどの
2つのなす角も$\frac{\pi}{3}$であるとする。
(1)$\overrightarrow{ OF }$を$\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }$を用いて表すと、
$\overrightarrow{ OF }= \boxed{き}$である。
(2)$|\overrightarrow{ OF }|,\ \cos \angle AOF$を求めると$|\overrightarrow{ OF }|= \boxed{く},$
$\ \cos \angle AOF=\boxed{け}$である。
(3)三角形ACDを底面とする三角錐OACDを、直線OFの周りに1回転して
できる円錐の体積は$\boxed{こ}$である。
(4)対角線OF上に点Pをとり、$|\overrightarrow{ OP }|=t$とおく。点Pを通り、$\overrightarrow{ OF }$に垂直な平面
をHとする。平行六面体$OABC-DEFG$を平面Hで切った時の断面が六角形
となるようなtの範囲は$\boxed{さ}$である。このとき、平面Hと辺AEの交点をQ
として、$|\overrightarrow{ AQ }|$をtの式で表すと$|\overrightarrow{ AQ }|=\boxed{し}$である。
また、$|\overrightarrow{ PQ }|^2$を$t$の式で表すと
$|\overrightarrow{ PQ }|^2=|\overrightarrow{ OQ }|^2-|\overrightarrow{ OP }|^2=\boxed{す}$
である。
(5)平行六面体$OABC-DEFG$を、直線OFの周りに1回転してできる回転体
の体積は$\boxed{こ}$である。

2022明治大学理工学部過去問
この動画を見る 

【理数個別の過去問解説】2018年度一橋大学 数学 第5問解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#一橋大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
一橋大学2018年第5問
aを実数とし, $f(x)=x-x³,g(x)=a(x-x²)$とする。2つの曲線$y=f(x),y=g(x)$は$0<x<1$の範囲に共有点をもつ。
(1)aのとりうる値の範囲を求めよ。
(2)y=f(x)とy=g(x)で囲まれた2つの部分の面積が等しくなるようなaの値を求めよ。
この動画を見る 
PAGE TOP