福井大 微分積分いい気分 - 質問解決D.B.(データベース)

福井大 微分積分いい気分

問題文全文(内容文):
2016福井大学過去問題
$f(x)=x^3,g(x)=x^3-4$
①f(x),g(x)の両方と接する直線l
②g(x)とlとで囲まれる面積
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#面積、体積#数学(高校生)#福井大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2016福井大学過去問題
$f(x)=x^3,g(x)=x^3-4$
①f(x),g(x)の両方と接する直線l
②g(x)とlとで囲まれる面積
投稿日:2023.08.01

<関連動画>

高専数学 微積I #206 体積

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
3辺の長さが3,4,5の三角形を底面とする高さが
10の三角錐の体積$V$を求めよ.
この動画を見る 

【高校数学】数Ⅱ:微分法と積分法:定積分と面積:1/6公式を用いて面積を求める!【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
教材: #PRIME数学#PRIME数学Ⅱ・B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の曲線または直線で囲まれた図形の面積$S$を求めよ。
$y=x^2-3x,y=2x$
この動画を見る 

和歌山大 4次関数と接線 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#岡山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
94年 和歌山大学過去問
$f(x)=x^4+ax^3+bx^2+cx+d$と$y=mx$は2点P、Qで接している。
P、Qの$x$座標はそれぞれ、-1、2で$f(x)$は$x=1$で極大値をとる。

(1)$f(x)$と$y=mx$で囲まれる面積を求めよ

(2)$m$の値と極大値を求めよ
この動画を見る 

【数Ⅱ】【微分法と積分法】領域の面積 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#面積、体積#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を同時に満たす点$(x,y)$の存在する部分の面積を求めよ。
$y\geqq x^2+1,y\geqq x+3,y\leqq x+7$
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第2問〜対称式もどきの表す点の動く領域

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#軌跡と領域#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 原点をOとするxy平面上に点A(1,-1)があり、点Bは$\overrightarrow{AB}$=(2$\cos\theta$, 2$\sin\theta$)(0≦θ≦2π)を満たす点である。Bの軌跡を境界線とする2つの領域のうち、点Aを含む領域を領域Cとする。ただし、領域Cは境界線を含む。
(1)点Bの軌跡の方程式は$\boxed{\ \ ナ\ \ }$である。
(2)点(x,y)がxy平面上のすべての点を動くとき、点(x-y,xy)がxy平面上で動く範囲は式$\boxed{\ \ ニ\ \ }$で表される領域である。
(3)点(x,y)が領域C上のすべての点を動くとき、点(x-y,xy)がxy平面上で動く領域を領域Dとする。
(i)領域Dを図示しなさい。ただし領域は斜線で示し、境界線となる式も図に記入すること。
(ii)領域Dの面積は$\boxed{\ \ ヌ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP