【中学数学】円周角の定理の証明~一緒にやってみよう~【中3数学】 - 質問解決D.B.(データベース)

【中学数学】円周角の定理の証明~一緒にやってみよう~【中3数学】

単元: #数学(中学生)#中3数学#円
指導講師: 【楽しい授業動画】あきとんとん
投稿日:2022.03.05

<関連動画>

【スッキリと「分かる」…!】連立方程式:早稲田大学系属早稲田実業学校高等部~全国入試問題解法

単元: #数学(中学生)#中2数学#中3数学#連立方程式#式の計算(展開、因数分解)#高校入試過去問(数学)#早稲田大学系属早稲田実業学校高等部
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$x \gt 0,\;\;y \gt 0\;$のとき連立方程式を解け。
\begin{eqnarray}
\left\{
\begin{array}{l}
\left(x+y\right)^2+x^2+y^2+\left(x-y\right)^2=2019\\
\left(x+y\right)\left(x-y\right)=385
\end{array}
\right.
\end{eqnarray}
この動画を見る 

【必出!グラフを意識できるか】二次関数:高知県高校入試~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数#高校入試過去問(数学)#高知県公立高校入試
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 高知県の高校

次の問いに答えなさい。
関数$y=-x^2 $について、
$-2 \leqq x \leqq 3$とき、
$a \leqq y \leqq b$である。
このとき、$a、b$の値を 求めよ。
この動画を見る 

【中学数学】面積は何倍か?~2024年度埼玉県公立高校入試大問1(11)~【高校受験】

アイキャッチ画像
単元: #数学(中学生)#中3数学#高校入試過去問(数学)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【中学数学】面積は何倍か?~2024年度埼玉県公立高校入試大問1(11)~【高校受験】

図のように平行四辺形ABCDがあり、辺AD、CDの中点をそれぞれE、Fとします。
このとき、△EBFの面積は△DEFの面積の何倍になるか求めなさい。
この動画を見る 

高等学校入学試験予想問題:三重県公立高等学校~全部入試問題

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#1次関数#2次関数#円
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \boxed{1}$
(1)$ -1+4\div \dfrac{2}{3}$
(2)$ 3(2a+5b)-(a+2b)$
(3)$ (x-2)(x+2)+(x-1)(x+4)$
(4)$ x^2+5x+3=0 $

$ \boxed{2}$
(1)点Pの座標は?
(2)y軸上に点Q,Qのy座標をt($ t \gt 4 $)とする.
Qを通り,x軸に平行な直線とb,mの交点をR,Sとする.
①t=6のとき,$ \triangle PRS $は?
②$ \triangle PRS $の面積が$ \triangle ABP $の5倍であるとき,tは?

$ \boxed{3}$
円周上にA,B,C,D,Eがある.
$AC=AE$,$\stackrel{\huge\frown}{BC}$=$\stackrel{\huge\frown}{DE}$であり,交点$ F,G$である.
(1)$ \triangle ABC \equiv \triangle AGE $を証明せよ.
(2)$ AB=4 $cm,$ AE=6$cm,$ DG=3 $cmのとき,
①$ AF=? $
②$ \triangle ABG $と$ \triangle CEF $の面積比を求めよ.
この動画を見る 

【数学】中高一貫校用問題集幾何:三平方の定理:空間図形 柱の展開

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
教材: #TK数学#TK数学問題集2(幾何編)#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
右の図は、辺ADと辺BCが平行で、AD=10㎝、BC=4㎝、AB=CD=5㎝の台形ABCDを底面とし、AE=BF=CG=DH=7cmを高さとする四角柱である。このとき、次の問いに答えなさい。
(1)この四角柱の側面上に、頂点Eから辺BFと辺CGに交わるように、頂点Dまで引く。このような線のうち、最も短い線の長さを求めなさい。
(2)平行な2つの線分AD,FGを含む平面でこの四角柱を切り、2つの立体に分けるとき、頂点Bを含む立体の体積を求めなさい。
この動画を見る 
PAGE TOP