問題文全文(内容文):
$0 \leqq \theta \lt 2π$のとき、次の方程式を解こう。
①$\sin (\theta +\displaystyle \frac{π}{6})=\displaystyle \frac{\sqrt{ 3 }}{2}$
②$\cos(\theta-\displaystyle \frac{π}{4})=\displaystyle \frac{\sqrt{ 3 }}{2}$
③$\sin (2\theta-\displaystyle \frac{π}{3})=\displaystyle \frac{\sqrt{ 3 }}{2}$
$0 \leqq \theta \lt 2π$のとき、次の方程式を解こう。
①$\sin (\theta +\displaystyle \frac{π}{6})=\displaystyle \frac{\sqrt{ 3 }}{2}$
②$\cos(\theta-\displaystyle \frac{π}{4})=\displaystyle \frac{\sqrt{ 3 }}{2}$
③$\sin (2\theta-\displaystyle \frac{π}{3})=\displaystyle \frac{\sqrt{ 3 }}{2}$
単元:
#数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
$0 \leqq \theta \lt 2π$のとき、次の方程式を解こう。
①$\sin (\theta +\displaystyle \frac{π}{6})=\displaystyle \frac{\sqrt{ 3 }}{2}$
②$\cos(\theta-\displaystyle \frac{π}{4})=\displaystyle \frac{\sqrt{ 3 }}{2}$
③$\sin (2\theta-\displaystyle \frac{π}{3})=\displaystyle \frac{\sqrt{ 3 }}{2}$
$0 \leqq \theta \lt 2π$のとき、次の方程式を解こう。
①$\sin (\theta +\displaystyle \frac{π}{6})=\displaystyle \frac{\sqrt{ 3 }}{2}$
②$\cos(\theta-\displaystyle \frac{π}{4})=\displaystyle \frac{\sqrt{ 3 }}{2}$
③$\sin (2\theta-\displaystyle \frac{π}{3})=\displaystyle \frac{\sqrt{ 3 }}{2}$
投稿日:2015.08.17