数学「大学入試良問集」【12−4 共通接線と面積】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【12−4 共通接線と面積】を宇宙一わかりやすく

問題文全文(内容文):
2つの関数$f_1(x)=-x^2+8x-9,f_2(x)=-x^2+2x+3$に対して、関数$F(x)$を次のように定義する。
$F(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
f_1(x)(xがf_1(x) \geqq f_2(x)をみたすとき) \\
f_2(x)(xがf_1(x) \lt f_2(x)をみたすとき)
\end{array}
\right.
\end{eqnarray}$

以下の問いに答えよ。
(1)$y=F(x)$のグラフをかけ。
(2)曲線$y=F(x)$上の異なる2点で接する直線$l$を求めよ。
(3)$y=F(x)$と$l$とで囲まれた図形の面積を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#名古屋市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2つの関数$f_1(x)=-x^2+8x-9,f_2(x)=-x^2+2x+3$に対して、関数$F(x)$を次のように定義する。
$F(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
f_1(x)(xがf_1(x) \geqq f_2(x)をみたすとき) \\
f_2(x)(xがf_1(x) \lt f_2(x)をみたすとき)
\end{array}
\right.
\end{eqnarray}$

以下の問いに答えよ。
(1)$y=F(x)$のグラフをかけ。
(2)曲線$y=F(x)$上の異なる2点で接する直線$l$を求めよ。
(3)$y=F(x)$と$l$とで囲まれた図形の面積を求めよ。
投稿日:2021.05.23

<関連動画>

福田の数学〜筑波大学2023年理系第2問〜放物線で囲まれた図形の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#筑波大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ $\alpha$, $\beta$を実数とし、$\alpha$>1とする。曲線$C_1$:$y$=|$x^2$-1|と曲線$C_2$:$y$=-$(x-\alpha)^2$+$\beta$が、点($\alpha$, $\beta$)と点(p, q)の2点で交わるとする。また、$C_1$と$C_2$で囲まれた図形の面積を$S_1$とし、$x$軸、直線$x$=$\alpha$、および$C_1$の$x$≧1を満たす部分で囲まれた図形の面積を$S_2$とする。
(1)pを$\alpha$を用いて表し、0<p<1であることを示せ。
(2)$S_1$を$\alpha$を用いて表せ。
(3)$S_1$>$S_2$であることを示せ。

2023筑波大学理系過去問
この動画を見る 

福田の数学〜東北大学2023年文系第4問〜線分の通過範囲の面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#東北大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 関数f(x)に対して、座標平面上の2つの点P(x, f(x)), Q(x+1, f(x)+1)を考える。実数xが0≦x≦2の範囲を動くとき、線分PQがつうかしてできる図形の面積をSとおく。以下の問いに答えよ。
(1)関数f(x)=-2|x-1|+2に 対して、Sの値を求めよ。
(2)関数f(x)=$\frac{1}{2}(x-1)^2$ に対して、曲線y=f(x)の接線で、傾きが1のものの方程式を求めよ。
(3)設問(2)の関数f(x)=$\frac{1}{2}(x-1)^2$ に対して、Sの値を求めよ。

2023東北大学文系過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第1問(7)〜直三角柱の切断面の面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形の性質#微分法と積分法#学校別大学入試過去問解説(数学)#立体図形#立体切断#空間における垂直と平行と多面体(オイラーの法則)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(7)1辺の長さが$\sqrt2$の正三角形を底面とし、高さが4の直三角柱を考える。
この直三角柱を以下の条件①と条件②を共に満たす平面で切断するとき、切断面の
面積の最小値は$\boxed{\ \ シ\ \ }$である。ただし、直三角柱は底面と側面が垂直である三角柱
のことである。
条件① 切断面が直角三角形になる。
条件② 切断面の図形のすべての辺が直三角柱の側面上にある。

2022慶應義塾大学薬学部過去問
この動画を見る 

福田の数学〜明治大学2022年全学部統一入試12AB第2問〜定積分で表された関数と面積の2等分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
xの関数$f(x)$を$f(x)=x^3$とする。
(1)xの関数$g(x)$を$g(x)=x^3-2x^2-x+3$とする。曲線$y=f(x)$と$y=g(x)$は
3個の交点をもつ。それら交点を$\ x \ $座標が小さい順にA,B,Cとすると、
点$A,B,C$の$\ x\ $座標はそれぞれ$ \boxed{ア},\ \boxed{イ},\ \boxed{ウ}$ である。

曲線$y=g(x)$の接線の傾きが最小となるのは、
接点の$\ x\ $座標が$\frac{\boxed{エ}}{\boxed{オ}}$のときで、
その最小値は$-\frac{\boxed{カ}}{\boxed{\ \ キ\ \ }}$である。
また、点Bを通る$y=g(x)$の接線の傾きの最小値は$-\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$である。

(2)$x$ の関数$h(x)$が

$h(x)=-x^2+\frac{x}{6}\int_0^3h(t)dt+4$
を満たすとき、$h(x)=-x^2+\boxed{\ \ コ\ \ }\ x+4$である。
曲線$y=f(x)$と$y=h(x)$の交点の中点は$(\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }},\ \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }})$であり、

$y=f(x)$と$y=h(x)$で囲まれる図形の面積は
原点を通る直線$y=\boxed{\ \ コ\ \ }x$で2等分される。

2022明治大学全統過去問
この動画を見る 

東大 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#東京大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=x^2$と$y=-(x-a)^2+b$とによって囲まれる面積が$\displaystyle \frac{1}{3}$となるための必要十分条件を$a,b$を用いて表せ

出典:1975年東京大学 過去問
この動画を見る 
PAGE TOP