大分大(医) 整数 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

大分大(医) 整数 Mathematics Japanese university entrance exam

問題文全文(内容文):
$7(x+y+z)=2(xy+yz+zx)$
$x,y,z$自然数 $x \leqq y \leqq z$
$(x,y,z)$の組すべて求めよ

出典:2007年大分大学医学部 過去問
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$7(x+y+z)=2(xy+yz+zx)$
$x,y,z$自然数 $x \leqq y \leqq z$
$(x,y,z)$の組すべて求めよ

出典:2007年大分大学医学部 過去問
投稿日:2019.05.09

<関連動画>

有名問題だよ(多分)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt[n]{n}$が最大となる自然数$n$を求めよ.
この動画を見る 

回転体の体積 立教新座

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
斜線部分を回転してできる立体の体積は?
*図は動画内参照

立教新座高等学校
この動画を見る 

よく間違える問題。整数部分と小数部分。計算が面白いんだ 東邦大附属東邦

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$5- \sqrt 7$の整数部分をa、小数部分をbとするとき
$b^2(a-b+4)=?$

東邦大学付属東邦高等学校
この動画を見る 

【数A】【図形の性質】作図の応用 ※問題文は概要欄

アイキャッチ画像
単元: #数A#図形の性質#方べきの定理と2つの円の関係#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形の性質#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
線分ABが与えられたとき, 線分ABを斜辺とし, ∠BAC=60° である直角三角形ABC を作図せよ。

右の図のような円があり,その周上に点Aがある。
Aを頂点の1つとし、他の5つの頂点がいずれもこの円周上にあるような正六角形を作図せよ。

右の図のように,直線と円Oおよびその中心が与えられている。
直線lに平行な円Oの接線を作図せよ。
この動画を見る 

福田の数学〜不定方程式の自然数解を求めよう〜慶應義塾大学2023年経済学部第1問(2)〜点対称と不定方程式の自然数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
( 2 ) m,nを自然数とし、pを実数とする。平面上の点$(p,/\dfrac{p}{2})$に関して点(m,n)と対称な点が$(-3m^2-4mn+5m,n^2-3n-3)$であるとき、関係式$\fbox{ス}m^2+2(\fbox{セ}n-\fbox{ソ}m)+2(n+\fbox{タ})(n-\fbox{チ})=0$
が成り立つ。ゆえに$m=\fbox{ツ},n=\fbox{テ},p=\fbox{トナ}$である。

2023慶應義塾大学経済学部過去問
この動画を見る 
PAGE TOP