【数C】平面ベクトル:位置ベクトル (1)AGをbとdを用いて表せ。(2)AGの延長と辺BCの交点をHとする。このとき、Hは辺BCをどのような比に内分するか。 - 質問解決D.B.(データベース)

【数C】平面ベクトル:位置ベクトル (1)AGをbとdを用いて表せ。(2)AGの延長と辺BCの交点をHとする。このとき、Hは辺BCをどのような比に内分するか。

問題文全文(内容文):
平行四辺形ABCDにおいて、2辺AB,ADの中点をそれぞれE,Fとし、線分BFと線分CEの交点をGとする。AB=B,AD=dとするとき、次の問に答えよ。
(1)AGをbとdを用いて表せ。
(2)AGの延長と辺BCの交点をHとする。このとき、Hは辺BCをどのような比に内分するか。
チャプター:

0:00 オープニング
0:05 問題文
0:15 問題解説(1):sとtの2通りで表す
3:25 問題文
3:31 問題解説(2):一直線はk倍、内分点は係数和が1
6:08 別解:メネチェバの利用
7:02 名言

単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平行四辺形ABCDにおいて、2辺AB,ADの中点をそれぞれE,Fとし、線分BFと線分CEの交点をGとする。AB=B,AD=dとするとき、次の問に答えよ。
(1)AGをbとdを用いて表せ。
(2)AGの延長と辺BCの交点をHとする。このとき、Hは辺BCをどのような比に内分するか。
投稿日:2020.09.15

<関連動画>

【高校数学】ベクトルの減法~逆ベクトル・零ベクトル~【数学C】

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
ベクトルの減法計算方法の確認動画です
逆ベクトル・零ベクトルとは??
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第1問(1)〜空間のベクトル方程式

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)a=(3,0,1)とする。
空間ベクトルb, cはともに大きさが1であり、
ab, bc, caとする。
(i)p,q,rを実数とし、x=pa+qb+rcとするとき、
内積xaxの大きさ|x|をp,q,rを用いて表すと、
xa=    ,| x |=    である。
(ii)(5,0,z)=sa+(cosθ)b+(sinθ)cを満たす実数s,θが存在するような
実数zは2個あるが、それらを全て求めるとz=    である。

2022慶應義塾大学理工学部過去問
この動画を見る 

【数C】【平面上のベクトル】ベクトルの成分3 ※問題文は概要欄

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):
a=(x,1) ,b=(2,3) について、
a+3bba
平行になるように、xの値を定めよ。
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第5問〜ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
5
1辺の長さが1の正五角形の対角線の長さをaとする。
(1)1辺の長さが1の正五角形OA1B1C1A2を考える。

A1C1B1=    °C1A1A2=    °となることから、A1A2
B1C1は平行である。ゆえに
A1A2=    B1C1
であるから
B1C1=1    A1A2=1    (OA2OA1)
また、OA1A2B1は平行で、さらに、OA2A1C1も平行であることから
B1C1=B1A2+A2O+OA1+A1C1=    OA1OA2+OA1+    OA2=(        )(OA2OA1)
となる。したがって
1    =        
が成り立つ。a>0に注意してこれを解くと、a=1+52を得る。


(2)下の図(※動画参照)のような、1辺の長さが1の正十二面体を考える。正十二面体とは、
どの面もすべて合同な正五角形であり、どの頂点にも三つの面が集まっている
へこみのない多面体のことである。

OA1B1C1A2に着目する。OA1A2B1が平行であることから
OB1=OA2+A2B1=OA2+    OA1
である。また
|OA2OA1|2=|A1A2|2=    +        
に注意すると
OA1OA2=            
を得る。

次に、面OA_2B_2C_2A_2に着目すると
OB2=OA3+    OA2
である。さらに
OA2OA3=OA3OA1=            
が成り立つことがわかる。ゆえに
OA1OB2=    , OB1OB2=    
である。

    ,     の解答群(同じものを繰り返し選んでもよい。)
0
1
1
1+52
152
1+52
152
12
1+54
154


最後に、面A2C1DEB2に着目する。
B2D=    A2C1=OB1
であることに注意すると、4点O,B1,D,B2は同一平面上にあり、四角形
OB1DB2    ことがわかる。

    の解答群
⓪正方形である
①正方形ではないが、長方形である
②正方形ではないが、ひし形である
③長方形でもひし形でもないが、平行四辺形である
④平行四辺形ではないが、台形である
⑤台形でない

(ただし、少なくとも1組の対辺が平行な四角形を台形という)

2021共通テスト過去問
この動画を見る 

【中学数学・数C】1次関数・平面ベクトル:座標平面上の三角形の面積

アイキャッチ画像
単元: #数学(中学生)#中2数学#平面上のベクトル#1次関数#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
2x+y-6=0
2x-y+2=0
2x-7y-22=0
によって作られる三角形の面積は?
この動画を見る 
PAGE TOP preload imagepreload image