福田のわかった数学〜高校2年生第6回〜相加相乗平均の関係 - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生第6回〜相加相乗平均の関係

問題文全文(内容文):
数学$\textrm{II}$ 相加相乗平均の関係
$a,b,c$を正の数とする。
(1)$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$を示せ。
(2)$ab+bc+ca=k$(定数)のとき、$abc$の最大値とその時の$a,b,c$を求めよ。
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 相加相乗平均の関係
$a,b,c$を正の数とする。
(1)$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$を示せ。
(2)$ab+bc+ca=k$(定数)のとき、$abc$の最大値とその時の$a,b,c$を求めよ。
投稿日:2021.04.18

<関連動画>

福田の1.5倍速演習〜合格する重要問題016〜京都大学2016年度理系数学第2問〜素数の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学的帰納法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
素数p,qを用いて
$p^q+q^p$
と表される素数を全て求めよ。

2016京都大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第1問(3)〜対数不等式

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)不等式$(\log_4x)^2$-$\log_8x^2$+$\frac{1}{3}$<0 を解くと$\boxed{\ \ エ\ \ }$である。
この動画を見る 

福田の数学〜名古屋大学2023年理系第4問〜二項係数と整式の展開

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $n$を正の整数とし、$n$次の整式$P_n(x)$=$x(x+1)...(x+n-1)$を展開して$P_n(x)$=$\displaystyle\sum_{m=1}^n {}_nB_mx^m$と表す。
(1)等式$\displaystyle\sum_{m=1}^n {}_nB_m$=$n!$ を示せ。
(2)等式$P_n(x+1)$=$\displaystyle\sum_{m=1}^n$(${}_nB_m・{}_mC_0$+${}_nB_m・{}_mC_1x$+...+${}_nB_m・{}_mC_mx^m)$ を示せ。
ただし、${}_mC_0$, ${}_mC_1$,..., ${}_mC_m$は二項係数である。
(3)k=1,2,...,nに対して、等式$\displaystyle\sum_{j=k}^n$${}_nB_j・{}_jC_k$=${}_{n+1}B_{k+1}$を示せ。

2023名古屋大学理系過去問
この動画を見る 

東京学芸大 整式の剰余 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#東京学芸大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
整式$p(x)$を$x^3-1$で割った余りが$ax^2-bx+1,$
$x^3+2x^2+2x+1$で割った余りが$-3ax^2+bx+9$である$a,b$の値

出典:2008年東京学芸大学 過去問
この動画を見る 

東工大 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#指数関数と対数関数#恒等式・等式・不等式の証明#対数関数#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$自然数、 $m \lt n,$ $0 \lt x \lt 1$

$(1+ \displaystyle \frac{x}{m^2})^m$と$(1+\displaystyle \frac{x}{n^2})^n$を大小比較せよ

出典:東京工業大学 過去問
この動画を見る 
PAGE TOP