「二次関数の最大最小 場合分け③】【高校数学ⅠA】を宇宙一わかりやすく - 質問解決D.B.(データベース)

「二次関数の最大最小 場合分け③】【高校数学ⅠA】を宇宙一わかりやすく

問題文全文(内容文):
2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
(2)$f(x)$の最大値$M(a)$を求めよ。
(3)$y=m(a)$のグラフをかけ。
(4)$y=M(a)$のグラフをかけ。


$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq 1)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
(2)$f(x)$の最小値$M(a)$を求めよ。
(3)$k=m(a)$のグラフをかけ。
(4)$K=M(a)$のグラフをかけ。


2次関数$f(x)=x^2-4x+3(a \leqq x \leqq a+2)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
(2)$f(x)$の最小値$M(a)$を求めよ。
(3)$t=m(a)$のグラフをかけ。
(4)$T=M(a)$のグラフをかけ。
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
2次関数$f(x)=x^2-2ax+4(1 \leqq x \leqq 3)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
(2)$f(x)$の最大値$M(a)$を求めよ。
(3)$y=m(a)$のグラフをかけ。
(4)$y=M(a)$のグラフをかけ。


$a \gt 0$とする。
2次関数$f(x)=x^2-4x+3(0 \leqq x \leqq 1)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
(2)$f(x)$の最小値$M(a)$を求めよ。
(3)$k=m(a)$のグラフをかけ。
(4)$K=M(a)$のグラフをかけ。


2次関数$f(x)=x^2-4x+3(a \leqq x \leqq a+2)$について
(1)$f(x)$の最小値$m(a)$を求めよ。
(2)$f(x)$の最小値$M(a)$を求めよ。
(3)$t=m(a)$のグラフをかけ。
(4)$T=M(a)$のグラフをかけ。
投稿日:2020.11.23

<関連動画>

福田の数学〜慶應義塾大学2021年経済学部第1問〜2つの円に同時に外接する円の条件

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 座標平面上の原点を中心とする$半径2$の円を$C_1$、中心の座標が$(7,0)$、$半径3$の円を$C_2$とする。さらに$r$を正の実数とするとき、$C_1$と$C_2$に同時に外接する円で、その中心の座標が$(a,b)$、半径が$r$であるものを$C_3$とする。ただし、2つの円が外接するとは、それらが$1点$を共有し、中心が互いの外部にあるときをいう。
$(1)r$の最小値は$\boxed{\ \ ア\ \ }$であり、$a$の最大値は$\boxed{\ \ イ\ \ }$となる。
$(2)a$と$b$は関係式$b^2=\boxed{\ \ ウエ\ \ }(a+\boxed{\ \ オカ\ \ })(a-4)$を満たす。
$(3)C_3$が$直線x=-3$に接するとき、$a=\frac{\boxed{\ \ キク\ \ }}{\boxed{\ \ ケ\ \ }},$ $|b|=\frac{\sqrt{\boxed{\ \ コサシ\ \ }}}{\boxed{\ \ ス\ \ }}$である。
$(4)点(a,b)$と原点を通る直線と、$点(a,b)$と$点(7,0)$を通る直線が直交するとき、
$|b|=\frac{\boxed{\ \ セソ\ \ }}{\boxed{\ \ タ\ \ }}$となる。

2021慶應義塾大学経済学部過去問
この動画を見る 

【高校数学】絶対値~中学の感覚のままでは危険です~ 1-8 【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
絶対値の説明動画です
この動画を見る 

【数Ⅰ】【図形と計量】空間の応用1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
図のような正四角錐$\rm PABCD$において、頂点$\rm P$から正方形$\rm ABCD$に下ろした垂線を$\rm PH$とする。$\rm PA=a,\angle APH=\theta$であるとき、正四角錐の体積を求めよ。
この動画を見る 

【高校数学】不等式の例題~難しいものも解こうよ~ 1-14.5【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1) |$x$| + |$x-2$| $\lt x + 1$

(2)次の連立不等式を満たす整数$x$がちょうど3個存在するような定数$a$の値の
  範囲を求めよ。
  $\begin{eqnarray}
\begin{cases}
5x - 2 \gt 3x …①\\
x-a \lt 0 …②
\end{cases}
\end{eqnarray}$

(3) $ax + a \lt a^2 + x$ 解け。ただし、$a$は定数とする。
この動画を見る 

福田の数学〜北海道大学2025文系第2問〜数え上げと余弦定理

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

整数$a,b,c$は条件

$2\leqq a \lt b \lt c \leqq 6$を満たすとする。

(1)不等式$a+b\gt c$を満たすような

$(a+b+c)$をすべて挙げよ。

(2)不等式$a^2+b^2\geqq c^2$を満たすような

$(a+b+c)$をすべて挙げよ。

(3) (2)で求めた$(a,b,c)$について、

頂点$A,B,C$と向かい合う辺の長さがそれぞれ

$a,b,c$で与えられる$\triangle ABC$を考える。

このようなすべての$\triangle ABC$について

$\cos \angle ACB$を求めよ。

$2025$年北海道大学文系過去問題
この動画を見る 
PAGE TOP