【数B】数列:2以上の自然数に対して、y=x²,y=-x²+2nxで囲まれる部分に含まれる格子点の個数をnの式で表そう。ただし、境界線も含む。 - 質問解決D.B.(データベース)

【数B】数列:2以上の自然数に対して、y=x²,y=-x²+2nxで囲まれる部分に含まれる格子点の個数をnの式で表そう。ただし、境界線も含む。

問題文全文(内容文):
2以上の自然数に対して、$y=x^2,y=-x^2+2nx$で囲まれる部分に含まれる格子点の個数をnの式で表そう。ただし、境界線も含む。
チャプター:

0:00 オープニング
0:05 問題文
0:15 格子点とは
1:01 状況整理
1:45 格子点の求め方:x+k or y=k
6:40 名言

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2以上の自然数に対して、$y=x^2,y=-x^2+2nx$で囲まれる部分に含まれる格子点の個数をnの式で表そう。ただし、境界線も含む。
備考:■訂正
5:49 の“k=1”は正しくは"k=0"です。
投稿日:2021.04.19

<関連動画>

【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問6_数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{$a_n$}($n=1,2,3,...$)は初項-8、公差4の等差数列であり、数列{$b_n$} ($n=1,2,3,...$)は初項から第n項までの和が$S_n\dfrac{3^n}{2}(n=1,2,3,...)$で与えられ る数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの 和を求めよ。 (2)$\displaystyle \sum_{k=1}^n (a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。 (4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_k b_k \vert$を求めよ。
この動画を見る 

【数B】数列:和の記号∑、部分分数分解の利用! 次の和S[n]を求めよ。S[n]=3/1²+5/(1²+2²)+7/(1²+2²+3²)+...+(2n+1)/(1²+2²+3²+...+n²)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の和$S_n$を求めよ。
$S_n=\dfrac{3}{1^2}+\dfrac{5}{1^2+2^2}+\dfrac{7}{1^2+2^2+3^2}+...+\dfrac{2n+1}{1^2+2^2+3^2+...+n^2}$
この動画を見る 

福田の1.5倍速演習〜合格する重要問題043〜北海道大学2017年度文系第3問〜確率漸化式の定番問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数B
指導講師: 福田次郎
問題文全文(内容文):
正四面体ABCDの頂点を移動する点Pがある。点Pは、1秒ごとに、
隣の3頂点のいずれかに等しい確率$\frac{a}{3}$で移るか、もとの頂点に確率1-aで
留まる。初め頂点Aにいた点Pが、n秒後に頂点Aにいる確率を$p_n$とする。
ただし、$0 \lt a \lt 1$とし、nは自然数とする。

(1)数列$\left\{p_n\right\}$の漸化式を求めよ。
(2)確率$p_n$を求めよ。

2017北海道大学文系過去問
この動画を見る 

【数B】数列:2020年駿台,高2,第2回全国模試 第6問(数列)の解説

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#数学(高校生)#駿台模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2020年駿台,高2,第2回全国模試 第6問
数列{$a_n$},{$b_n$},{$c_n$}を次のように定める。$a_1=1, a_{n+1}=2a_n+1, b_1=1, b_{n+1}=2b_n+a_n, c_1=1, c_{n+1}=3c_n+b_n (n=1,2,3,...)$。次の問いに答えよう。
(1){$a_n$}の一般項を求めよう。
(2)$d_n=\dfrac{b_n}{2^(n-1)}$とおくとき、
 (i)$d_{n+1}$を$d_n$を用いて表そう。 (ii){$d_n$}の一般項を求めよう。
(3){$c_n$}の一般項を求めよう。
この動画を見る 

宇都宮大 連立漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#宇都宮大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n,a_{n},b_{n}$自然数

$(1+\sqrt{ 2 })^n=a_{n}+b\sqrt{ 2 }$とする

$a^2_{n}-2b^2_{n}=(-1)^n$を示せ

出典:宇都宮大学 過去問
この動画を見る 
PAGE TOP