慶應義塾の入試問題 魔法見抜ける? - 質問解決D.B.(データベース)

慶應義塾の入試問題 魔法見抜ける?

問題文全文(内容文):
等式を次のように変形したが最後の行が間違っている。
間違いの原因は何行目から何行目の変形か。理由とともに答えよ。
(1)$x^2+2x+3=x^2+x$
(2)$x^2+7x+12 = x^2+6x+9$
(3)$(x^2+7x+12) \div x = (x^2+6x+9) \div x$
(4)$(x+3)(x+4) \div x = (x+3)^2 \div x$
(5)$(x+4) \div x = (x+3) \div x $
(6)$x+4 = x+3$
4=3
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#文章題#文章題その他#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
等式を次のように変形したが最後の行が間違っている。
間違いの原因は何行目から何行目の変形か。理由とともに答えよ。
(1)$x^2+2x+3=x^2+x$
(2)$x^2+7x+12 = x^2+6x+9$
(3)$(x^2+7x+12) \div x = (x^2+6x+9) \div x$
(4)$(x+3)(x+4) \div x = (x+3)^2 \div x$
(5)$(x+4) \div x = (x+3) \div x $
(6)$x+4 = x+3$
4=3
投稿日:2021.03.28

<関連動画>

【理数個別の過去問解説】2021年度 神奈川大学給費生入試 文系数学 第2問解説

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#学校別大学入試過去問解説(数学)#神奈川大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを正の定数とする。区間$0\leqq x\leqq 1$で定義された関数$ y = x^2 ‐ ax + a$ について、次の問いに答えよ。
(1) この区間におけるyの最大値と最小値をaを用いて表せ。
(2) yの最小値が$\dfrac{7}{16}$となるようなaに対し、yの最大値を求めよ。
この動画を見る 

正方形と2つの正三角形の面積の和 2通りで解説

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
2つの正三角形と正方形
全体の面積=?

*図は動画内参照
この動画を見る 

九州大学 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2014九州大学過去問題
(1)aは自然数$\quad$ $a^2$を3で割った余りは0か1を証明
(2)$a^2+b^2=3c^2$を満たすと仮定するとa,b,cはすべて3で割りきれなければならないことを証明せよ。
(3)$a^2+b^2=3c^2$を満たす自然数a,b,cは存在しないことを証明
この動画を見る 

【数Ⅰ】2次関数:2次不等式 解から定数の決定

アイキャッチ画像
単元: #2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次不等式$ax^2+8x+b>0$の解が、$-1<x<5$のとき、a,bの値を求めよう。
この動画を見る 

3乗根の大小

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt[3]{26}$と$\sqrt[3]{28}$では,どちらが$3$に近いか.
この動画を見る 
PAGE TOP