【受験対策】数学-関数16 - 質問解決D.B.(データベース)

【受験対策】数学-関数16

問題文全文(内容文):
図のように,関数$y = ax^2$ グラフ上に,点$A(4,8)$がある.
また,点$B$,点$C$は$y$軸上の点で,
$\triangle ABC$は$AB = AC = 5$ の二等辺三角形である.
このとき,次の各問いに答えなさい.

①$a$の値を求めなさい.

②点$A$から$y$軸に垂線$AD$をひく.
この関数のグラフ上で,点$A$と原点$O$の間に点$P$をとり,
$\triangle ABC$の面積と$\triangle ADP$の面積が等しくなるようにする.
このとき,点$P$の$x$座標を求めなさい.

③点$C$を通り,$AB$に平行な直線と,この関数のグラフの交点のうち,
$x$座標が負である点を$E$とし,$EC$の延長と点$A$から
$x$軸にひいた垂線との交点を$F$とする.
このとき,②における点$P$において,
$\triangle OEF$の面積は$\triangle OPC$の面積の何倍か
求めなさい.

図は動画内参照
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
図のように,関数$y = ax^2$ グラフ上に,点$A(4,8)$がある.
また,点$B$,点$C$は$y$軸上の点で,
$\triangle ABC$は$AB = AC = 5$ の二等辺三角形である.
このとき,次の各問いに答えなさい.

①$a$の値を求めなさい.

②点$A$から$y$軸に垂線$AD$をひく.
この関数のグラフ上で,点$A$と原点$O$の間に点$P$をとり,
$\triangle ABC$の面積と$\triangle ADP$の面積が等しくなるようにする.
このとき,点$P$の$x$座標を求めなさい.

③点$C$を通り,$AB$に平行な直線と,この関数のグラフの交点のうち,
$x$座標が負である点を$E$とし,$EC$の延長と点$A$から
$x$軸にひいた垂線との交点を$F$とする.
このとき,②における点$P$において,
$\triangle OEF$の面積は$\triangle OPC$の面積の何倍か
求めなさい.

図は動画内参照
投稿日:2016.08.13

<関連動画>

【中学数学】平方根・ルートの大小比較の問題 2-5【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#平方根
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
次の数を小さい順に並べよ
1⃣
$\sqrt{ 0.2 },2\sqrt{ 2 },\sqrt{ 5 },2$

2⃣
$\sqrt{ 0.7 },0.8,\sqrt{ \displaystyle \frac{1}{2} }$
この動画を見る 

約分の裏技・テクニック~意外と知らない~

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#数学(中学生)#中1数学#中2数学#中3数学#約数・倍数を利用する問題#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
2つの数字の公約数は、2つの数字の差の約数になる次の分数を約分せよ。
(1)$\displaystyle \frac{51}{68}$
(2)$\displaystyle \frac{10}{35}$
(3)$\displaystyle \frac{161}{115}$
(4)$\displaystyle \frac{5080}{5207}$
この動画を見る 

【公式なんてイラナイ…!?】整数:ノートルダム女学院高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#正の数・負の数#方程式#2次方程式#文字と式#高校入試過去問(数学)#ノートルダム女学院高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
29=a²+b²+c²
上の式に入る正の整数の組(a,b,c)を答えなさい
ただし、a≦b≦cとします
この動画を見る 

【高校受験対策/数学】死守56

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#資料の活用#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守56

①$4-6 \div (-2)$を計算しなさい。

②$(\sqrt{5}-1)^2+\sqrt{20}$を計算しなさい。

③$(2x+1)(3x-1)-(2x-1)(3x+1)$を計算しなさい。

④方程式$(x+1)(x-1) = 3(x+1)$を解きなさい。

⑤500円出して$a$円の鉛筆5本と $b$円の消しゴム1個を買うと、おつりがあった。
この数量の関係を不等式で表しなさい。

⑥2種類の体験学習A・Bがあり、生徒は必ずA・Bのいずれか一方に参加する。
A・Bそれぞれを希望する生徒の人数の比は$1:2$であった。
その後、14人の生徒がBからAへ希望を変更したため、A.Bそれぞれを希望する生徒の人数の比は$5:7$となった。
体験学習に参加する生徒の人数は何人か、求めなさい。

⑦関数に$y=x^2$について正しく述べたものを、次のア~エからすべて選びなさい。
ア $x$の値が増加すると、$y$の値も増加する。
イ グラフが$y$軸を対称の軸として線対称である。
ウ $x$の変域が$-1 \leqq x \leqq 2$のとき、その変域は$-1 \leqq y \leqq 4$
である。
エ $x$がどんな値をとっても、$y \geqq 0$である。

⑧男子生徒6人のハンドボール投げの記録は右のようであった。
6人のハンドボール投げの記録の中央値は何mか求めなさい。
この動画を見る 

【高校受験対策】数学-関数26

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図1で,点$O$は原点,直線$\ell$は関数$y=\dfrac{1}{4}x^2$のグラフを表している.
点$A$,点$B$はともに曲線上にあり,$x$座標はそれぞれ$-4,2$である.
曲線上にある点を$P$とする.このとき,次の各問いに答えよ.

$\boxed{問1}$
点$P$の$y$座標を$a$とする.
点$P$が点$A$から点$B$まで動くとき,
$a$のとる値の範囲を不等号を使って,$\Box \leqq a \leqq \Box$で表せ.

$\boxed{問2}$
右の図2は,図1において,点$P$を通り傾き$-\dfrac{1}{2}$の直線を引き,
$y$軸との交点を$Q$とした場合を表している.
次の①,②に答えよ.

①異なる2点$A,P$を通る直線が$x$軸と平行になるとき,
2点$A,Q$を通る直線の式を求めよ.

②点$P$の$x$座標が2より大きい数であるとき,
点$A$と点$B$,点$A$と点$Q$,点$B$と点$Q$をそれぞれ結んだ場合を考える.
$△ABQ$の面積が30のとき,点$P$の座標を求めよ.

図は動画内を参照
この動画を見る 
PAGE TOP