大学入試問題#728「たぶん良問」 早稲田大学商学部(2014) 積分方程式 - 質問解決D.B.(データベース)

大学入試問題#728「たぶん良問」 早稲田大学商学部(2014) 積分方程式

問題文全文(内容文):
任意の実数$x$に対して、
$\displaystyle \int_{0}^{x} f(t) dt-3\displaystyle \int_{-x}^{0} f(t) dt=x^3$を満たす関数$f(x)$を求めよ

出典:2014年早稲田大学商学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
任意の実数$x$に対して、
$\displaystyle \int_{0}^{x} f(t) dt-3\displaystyle \int_{-x}^{0} f(t) dt=x^3$を満たす関数$f(x)$を求めよ

出典:2014年早稲田大学商学部 入試問題
投稿日:2024.02.07

<関連動画>

福田の数学〜慶應義塾大学2023年看護医療学部第3問〜三角比と図形の計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 半径Rの円に内接する四角形ABCDにおいて
AB=1+$\sqrt3$, BC=CD=2, $\angle$ABC=60°
であるとき、$\angle$ADCの大きさは$\angle$ADC=$\boxed{\ \ ソ\ \ }$であり、AC,AD,Rの長さはそれぞれAC=$\boxed{\ \ タ\ \ }$, AD=$\boxed{\ \ チ\ \ }$, R=$\boxed{\ \ ツ\ \ }$である。
また、四角形ABCDの面積は$\boxed{\ \ テ\ \ }$である。さらに、θ=$\angle$DABとするとき、$\sin\theta$=$\boxed{\ \ ト\ \ }$であり、BDの長さはBD=$\boxed{\ \ ナ\ \ }$である。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

突破口を探す不定積分 京都帝国大学1936 大学入試問題#931

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$ \sec \ x=\dfrac{1}{\cos x}$とする.
$\displaystyle \int_{}^{} \sec \ x \ \tan^2 x \ dx$を解け.

1936京都帝国大学過去問題
この動画を見る 

福田の数学〜慶應義塾大学理工学部2025第1問(1)〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}$

(1)複素数平面上で、方程式

$\vert z+i \vert = 2 \vert z-\sqrt3 \vert$

を満たす点$z$全体が表す図形は、

中心が$\boxed{ア}$,半径が$\boxed{イ}$である。

$2025$年慶應義塾大学理工学部過去問題
この動画を見る 

神戸薬 放物線と2本の接線で囲まれた面積 積分 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
神戸薬科大学過去問題
y=x上のT(t,t)から$y=x^2+1$へ2本の接線を引く。
接点をA,B。放物線とTA,TBで囲まれた面積をSとする。
Sの最小値
この動画を見る 

大学入試問題#354「思った以上に大変でした・・・」 弘前大学 改  #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log\ x} \displaystyle \frac{(e^x-1)(e^x-2)}{e^x+1} dx$

出典:広前大学 入試問題
この動画を見る 
PAGE TOP