問題文全文(内容文):
任意の実数$x$に対して、
$\displaystyle \int_{0}^{x} f(t) dt-3\displaystyle \int_{-x}^{0} f(t) dt=x^3$を満たす関数$f(x)$を求めよ
出典:2014年早稲田大学商学部 入試問題
任意の実数$x$に対して、
$\displaystyle \int_{0}^{x} f(t) dt-3\displaystyle \int_{-x}^{0} f(t) dt=x^3$を満たす関数$f(x)$を求めよ
出典:2014年早稲田大学商学部 入試問題
単元:
#大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師:
ますただ
問題文全文(内容文):
任意の実数$x$に対して、
$\displaystyle \int_{0}^{x} f(t) dt-3\displaystyle \int_{-x}^{0} f(t) dt=x^3$を満たす関数$f(x)$を求めよ
出典:2014年早稲田大学商学部 入試問題
任意の実数$x$に対して、
$\displaystyle \int_{0}^{x} f(t) dt-3\displaystyle \int_{-x}^{0} f(t) dt=x^3$を満たす関数$f(x)$を求めよ
出典:2014年早稲田大学商学部 入試問題
投稿日:2024.02.07