【数B】【確率分布と統計的な推測】正規分布2 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数B】【確率分布と統計的な推測】正規分布2 ※問題文は概要欄

問題文全文(内容文):
正規分布N (10,5²)に従う確率変数について、次の等式が成り立つように、 定数の値を定めよ。
(1) P(10 ≦ X ≦ a) = 0.4772
(2) P(X ≧ a) = 0.0082
(3) P(|X - 10| ≦ a) = 0.8664
(4) P(|X - 10| ≦ a) = 0.0278

正規分布N(m、δ²)において、変数Xが|X - m|≦kδ の範囲に入る確率が、
次の値になるように、正の定数の値を定めよ。
(1) 0.006
(2) 0.016
(3) 0.242
チャプター:

0:00 OP
0:35 問題1
7:20 問題2

単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)#数B
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#確率分布と統計的推測#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
正規分布N (10,5²)に従う確率変数について、次の等式が成り立つように、 定数の値を定めよ。
(1) P(10 ≦ X ≦ a) = 0.4772
(2) P(X ≧ a) = 0.0082
(3) P(|X - 10| ≦ a) = 0.8664
(4) P(|X - 10| ≦ a) = 0.0278

正規分布N(m、δ²)において、変数Xが|X - m|≦kδ の範囲に入る確率が、
次の値になるように、正の定数の値を定めよ。
(1) 0.006
(2) 0.016
(3) 0.242
投稿日:2025.02.06

<関連動画>

【統計分野】正規分布ってなんだろう?ついて解説しました!【数学b】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
統計分野の基礎、正規分布についての解説動画です
この動画を見る 

【高校数学】正規分布はこれ1本でマスター!統計的な推測 2週間完成【④正規分布】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
・1000人の生徒に数学のテストを行ったところ、その成績は平均48点、標準偏差15点であった。成績が正規分布に従うものとするとき、次の問いに答えよ。
(1) ある生徒の点数が78点以上である確率を求めよ。
(2) 78点以上の生徒は約何人いると考えられるか。
(3) 30点以下の生徒は約何人いると考えられるか。

・ある植物の種子の発芽率は80%であるという。この植物の種子を900個まいたとき、次の問いに答えよ。
(1) 750個以上の種子が発芽する確率を求めよ。
(2) 900個のうちn個以上の種子が発芽する確率が80%以上となるようなnの最大値を求めよ。
この動画を見る 

【数B】【確率分布と統計的な推測】仮説検定 ※問題文は概要欄

アイキャッチ画像
単元: #確率分布と統計的な推測#統計的な推測#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
テニス選手 A、B の年間の対戦成績は、Aの 23 勝 13 敗であった。両選手の力に差があると判断してよいか。有意水準 5% で検定せよ。

ある政党の 5 年間の支持率は 20% であった。無作為に 900 人を選んで調査したところ、 151 人が支持しているという結果であった。支持率は 5 年前から下がったと判断してよいか。有意水準 1% で検定せよ。

ある高校で、生徒会の会員に A、B の 2 人が立候補した。選挙の直前に、全生徒の中から 48 人を無作為抽出し、どちらを支持するかを調査したところ 30 人がAを支持し、 18 人が日を支持した。全生徒 1000 人が投票するものとして、次の問いに答えよ。ただし、白票や無効票はないものとする。
(1) Aの得票数を信頼度 95% で推定せよ。
(2) Aの支持率の方が高いと判断してよいか。有意水準 5% で検定せよ。
この動画を見る 

【数B】確率分布:確率分布表から分散を求めよう!

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
確率変数Xが,X=0,1,2にあたる確率を1/6,1/3,1/2としたとき、分散V(X)の値
この動画を見る 

【統計分野、演習編】確率密度関数と面積の関係の確認【数学b】

アイキャッチ画像
単元: #確率分布と統計的な推測#確率分布#数学(高校生)#数B
指導講師: 3rd School
問題文全文(内容文):
確率変数$X$の確率密度関数$f(x)$が次の式で表されるとき、確率$P(0 \leqq x \leqq 2)$を求めよ

$f(x)=\displaystyle \frac{1}{8}x(0 \leqq x \leqq 4)$
この動画を見る 
PAGE TOP