問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ aを1以上の実数とし、AB=BC=CA=1およびAD=BD=CD=a\\
を満たす四面体ABCDを考える。このとき、\cos\angle BAD=\boxed{\ \ ア\ \ }である。\\
また、ADの中点をEとしたとき、\overrightarrow{ EB }を\overrightarrow{ AB },\overrightarrow{ AC },\overrightarrow{ AD }を用いて表すと\\
\overrightarrow{ EB }=\boxed{\ \ イ\ \ }\ となるので、|\overrightarrow{ EB }|=\boxed{\ \ ウ\ \ }\ で、\overrightarrow{ EB }・\overrightarrow{ EC }=\boxed{\ \ エ\ \ }\\
である。よって、a=1のとき、\cos\angle BEC=\boxed{\ \ オ\ \ }であり、\\
\angle BEC=60°となるのはa=\boxed{\ \ カ\ \ }\ のときである。
\end{eqnarray}
2022慶応義塾大学看護医療学科過去問
\begin{eqnarray}
{\large\boxed{4}}\ aを1以上の実数とし、AB=BC=CA=1およびAD=BD=CD=a\\
を満たす四面体ABCDを考える。このとき、\cos\angle BAD=\boxed{\ \ ア\ \ }である。\\
また、ADの中点をEとしたとき、\overrightarrow{ EB }を\overrightarrow{ AB },\overrightarrow{ AC },\overrightarrow{ AD }を用いて表すと\\
\overrightarrow{ EB }=\boxed{\ \ イ\ \ }\ となるので、|\overrightarrow{ EB }|=\boxed{\ \ ウ\ \ }\ で、\overrightarrow{ EB }・\overrightarrow{ EC }=\boxed{\ \ エ\ \ }\\
である。よって、a=1のとき、\cos\angle BEC=\boxed{\ \ オ\ \ }であり、\\
\angle BEC=60°となるのはa=\boxed{\ \ カ\ \ }\ のときである。
\end{eqnarray}
2022慶応義塾大学看護医療学科過去問
単元:
#大学入試過去問(数学)#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{4}}\ aを1以上の実数とし、AB=BC=CA=1およびAD=BD=CD=a\\
を満たす四面体ABCDを考える。このとき、\cos\angle BAD=\boxed{\ \ ア\ \ }である。\\
また、ADの中点をEとしたとき、\overrightarrow{ EB }を\overrightarrow{ AB },\overrightarrow{ AC },\overrightarrow{ AD }を用いて表すと\\
\overrightarrow{ EB }=\boxed{\ \ イ\ \ }\ となるので、|\overrightarrow{ EB }|=\boxed{\ \ ウ\ \ }\ で、\overrightarrow{ EB }・\overrightarrow{ EC }=\boxed{\ \ エ\ \ }\\
である。よって、a=1のとき、\cos\angle BEC=\boxed{\ \ オ\ \ }であり、\\
\angle BEC=60°となるのはa=\boxed{\ \ カ\ \ }\ のときである。
\end{eqnarray}
2022慶応義塾大学看護医療学科過去問
\begin{eqnarray}
{\large\boxed{4}}\ aを1以上の実数とし、AB=BC=CA=1およびAD=BD=CD=a\\
を満たす四面体ABCDを考える。このとき、\cos\angle BAD=\boxed{\ \ ア\ \ }である。\\
また、ADの中点をEとしたとき、\overrightarrow{ EB }を\overrightarrow{ AB },\overrightarrow{ AC },\overrightarrow{ AD }を用いて表すと\\
\overrightarrow{ EB }=\boxed{\ \ イ\ \ }\ となるので、|\overrightarrow{ EB }|=\boxed{\ \ ウ\ \ }\ で、\overrightarrow{ EB }・\overrightarrow{ EC }=\boxed{\ \ エ\ \ }\\
である。よって、a=1のとき、\cos\angle BEC=\boxed{\ \ オ\ \ }であり、\\
\angle BEC=60°となるのはa=\boxed{\ \ カ\ \ }\ のときである。
\end{eqnarray}
2022慶応義塾大学看護医療学科過去問
投稿日:2022.07.23