大学入試問題#786「よく出題されている。」 慶應義塾大学商学部(2024) #整数問題 - 質問解決D.B.(データベース)

大学入試問題#786「よく出題されている。」 慶應義塾大学商学部(2024) #整数問題

問題文全文(内容文):
$a \lt b \lt c$ かつ$\displaystyle \frac{1}{a}+\displaystyle \frac{2}{b}+\displaystyle \frac{3}{c}=2$を満たす自然数の組$(a,b,c)$をすべて求めよ

出典:2024年慶應義塾大学商学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a \lt b \lt c$ かつ$\displaystyle \frac{1}{a}+\displaystyle \frac{2}{b}+\displaystyle \frac{3}{c}=2$を満たす自然数の組$(a,b,c)$をすべて求めよ

出典:2024年慶應義塾大学商学部 入試問題
投稿日:2024.04.05

<関連動画>

福田の数学〜浜松医科大学2023医学部年第3問〜複素数平の絶対値と偏角Part2

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#浜松医科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
Sを実部、虚部ともに整数であるような0以外の複素数全体の集合、Tを偏角 が0以上$\displaystyle \frac{π}{2}$未満であるようなSの要素全体の集合とする。またiは虚数単位とする。以下の問いに答えよ。
(1)$α=2$, $β=1+i$, $γ=1$のとき、 $|αβγ|$ の値を求めよ。
(2)複素数zについて、 arg z = $\displaystyle \frac{π}{8}$のとき arg(iz) の値を求めよ。
(3) α, ß, γ を Tの要素とする。このとき、$0 < |αβγ| ≦ \sqrt{5}$ を満たす α, ß, γ の
組の総数kの値を求めよ。
(4)α, ß, γをSの要素とする。このとき、$0 < |αβγ| ≦ \sqrt{5}$ および
$\displaystyle \frac{π}{8} ≦arg(αßγ) < \displaystyle \frac{5π}{8}$
を満たす α, β, yの組の総数をmとするとき、mをkで割った商と余りを求め
よ。

2023浜松医科大学医過去問
この動画を見る 

愛媛大 式の計算

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#愛媛大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(\displaystyle \frac{1+\sqrt{ 5 }}{2})^3$の小数部分を$a$
$a^4+5a^3+4a^2+4a$の値を求めよ

出典:2015年愛媛大学 過去問
この動画を見る 

福田の数学〜東京工業大学2022年理系第2問〜3つの数の最大公約数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
3つの正の整数a,b,cの最大公約数が1であるとき、次の問いに答えよ。
(1)$a+b+c,ab+bc+ca,abc$の最大公約数は1であることを示せ。
(2)$a+b+c,a^2+b^2+c^2,a^3+b^3+c^3$の最大公約数となるような正の整数を
全て求めよ。

2022東京工業大学理系過去問
この動画を見る 

#東京理科大学2023#定積分#ますただ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\sqrt{ e }} \displaystyle \frac{e}{x^2+e} dx$

出典:2023年東京理科大学
この動画を見る 

ナイスな整数問題 富山大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#富山大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023富山大学
z整数,n自然数
$z^{3^{n}}-z^{3^{n-1}}$は$3^n$の倍数である。を次の場合で示せ
①n=1
②n=2
③すべてのn
この動画を見る 
PAGE TOP