【数C】【平面上の曲線】2次曲線1 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【平面上の曲線】2次曲線1 ※問題文は概要欄

問題文全文(内容文):
次のような放物線の方程式を求めよ。
(1) 軸が x軸、頂点が原点で、点 (8,4)を通る放物線
(2) 頂点が原点で、焦点がx軸上にあり、点(-3,3)を通る放物線
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような放物線の方程式を求めよ。
(1) 軸が x軸、頂点が原点で、点 (8,4)を通る放物線
(2) 頂点が原点で、焦点がx軸上にあり、点(-3,3)を通る放物線
投稿日:2025.05.20

<関連動画>

福田の数学〜上智大学2021年理工学部第1問〜双曲線の方程式と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 媒介変数表示
$x=\frac{2}{\cos\theta}, y=3\tan\theta+1$
で表される図形Cを考える。

(1)Cは頂点$(±\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ })$、焦点$(±\sqrt{\boxed{\ \ ウ\ \ }},\ \boxed{\ \ エ\ \ })$、
漸近線$y=±\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}x+\boxed{\ \ キ\ \ }$をもつ双曲線である。
(2)双曲線Cと直線$x=4$は、2点$(4,\ \boxed{\ \ ク\ \ }±\boxed{\ \ ケ\ \ }\sqrt{\boxed{\ \ コ\ \ }})$
で交わる。\\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

福田のおもしろ数学225〜楕円と直線の交点を使った線分の長さの積の最小値

アイキャッチ画像
単元: #数A#図形の性質#平面上の曲線#方べきの定理と2つの円の関係#2次曲線#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
点 $\mathrm{P}(2,1)$ を通る直線が楕円 $\displaystyle \frac{x^2}{2}+\frac{y^2}{3}=1$ と異なる2点 $\mathrm{Q}, \, \mathrm{R}$ で交わっている。$\mathrm{PQ} \cdot \mathrm{PR}$ の最小値を求めよ。
この動画を見る 

【数Ⅲ】2次曲線:点Pが円x²+y²=4上を動く。yだけを1/2した点Qの軌跡を求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Pが円$x²+y²=4$上を動く。yだけを$\dfrac{1}{2}$した点Qの軌跡を求めよ。
この動画を見る 

福田の数学〜上智大学2022年理工学部第4問〜線分の中点の軌跡と直線の通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
座標平面上に円C$:x^2+y^2=4$と点$P(6,\ 0)$がある。円C上を点$A(2a,\ 2b)$が
動くとき、線分APの中点をMとし、線分APの垂直二等分線をlとする。
(1)点Mの軌跡の方程式を求め、その軌跡を図示せよ。
(2)直線lの方程式をa,\ bを用いて表せ。
(3)直線lが通過する領域を表す不等式を求め、その領域を図示せよ。

2022上智大理工学部過去問
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第7問〜双曲線と図形問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上の曲線#図形と計量#2次曲線#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{7}}$ 原点を$O$とする座標平面上で、2点$(\sqrt5,0),$$(-\sqrt5,0)$を焦点とし、2点$A(1,0),$$A'(-1,0)$を頂点とする双曲線を$H$とする。$H$の方程式を$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$と表すとき、$a^2=\boxed{\ \ ネ\ \ },$ $b^2=\boxed{\ \ ノ\ \ }$である。双曲線Hの漸近線のうち、傾きが正であるものの方程式は$y=\boxed{\ \ ハ\ \ }x$である。$点P(p,q)$は双曲線$H$の$第1象限$の部分を動く点とする。$点P$から$x軸$に下ろした垂線の足を$Q$、$直線PQ$と$双曲線H$の漸近線との交点のうち、$第1象限$にあるものを$R$とする。$点P$における$H$の接線と$直線x=1$との交点を$M$とし、$直線OM$と$直線AP$との交点を$N$とする。$三角形OQR$の面積を$S$、$三角形OAN$の面積を$T$とするとき、$\frac{T}{S}$は、$p=\boxed{\ \ ヒ\ \ }$のとき、最大値$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}$をとる。

2021早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP