shape problems : Shirotan's cute kawaii math show #Math #exam #questions #brainteasers #study - 質問解決D.B.(データベース)

shape problems : Shirotan's cute kawaii math show #Math #exam #questions #brainteasers #study

問題文全文(内容文):
半径が$1$cm, $2$cm, $3$cmの同心円。
半径$3$cmの円の弦が、半径$1$cmの円と点Rで接している。
弦の実線部分PQの長さは$\fbox{$\hskip5em\Rule{0pt}{0.8em}{0em}$}$cmである。
単元: #数学(中学生)#中3数学#三平方の定理#高校入試過去問(数学)#福岡大学附属大濠高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
半径が$1$cm, $2$cm, $3$cmの同心円。
半径$3$cmの円の弦が、半径$1$cmの円と点Rで接している。
弦の実線部分PQの長さは$\fbox{$\hskip5em\Rule{0pt}{0.8em}{0em}$}$cmである。
投稿日:2025.10.15

<関連動画>

【受験対策】数学-関数16

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
図のように,関数$y = ax^2$ グラフ上に,点$A(4,8)$がある.
また,点$B$,点$C$は$y$軸上の点で,
$\triangle ABC$は$AB = AC = 5$ の二等辺三角形である.
このとき,次の各問いに答えなさい.

①$a$の値を求めなさい.

②点$A$から$y$軸に垂線$AD$をひく.
この関数のグラフ上で,点$A$と原点$O$の間に点$P$をとり,
$\triangle ABC$の面積と$\triangle ADP$の面積が等しくなるようにする.
このとき,点$P$の$x$座標を求めなさい.

③点$C$を通り,$AB$に平行な直線と,この関数のグラフの交点のうち,
$x$座標が負である点を$E$とし,$EC$の延長と点$A$から
$x$軸にひいた垂線との交点を$F$とする.
このとき,②における点$P$において,
$\triangle OEF$の面積は$\triangle OPC$の面積の何倍か
求めなさい.

図は動画内参照
この動画を見る 

分母の有理化のタイミング 桃山学院

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#平方根
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{41}{\sqrt{42}}-(\frac{\sqrt{6}}{\sqrt{7}}-\frac{\sqrt{7}}{\sqrt{6}})$
この動画を見る 

答えは出るでしょう。。。

アイキャッチ画像
単元: #数学(中学生)#中3数学#数A#図形の性質#三平方の定理#方べきの定理と2つの円の関係#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$c^2$をa,bで表せ
*図は動画内参照
この動画を見る 

【中学数学】2次関数の決定~変域~ 4-2.5【中3数学】

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
関数 $y=ax^2$で$x$の変域が$-1 \leqq x \leqq 6$のとき、$y$の変域が$-18 \leqq y \leqq 0$である。このときの$a$を求めよ。
この動画を見る 

【高校受験対策/数学】死守-94

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#式の計算(展開、因数分解)#平方根#空間図形#文字と式#標本調査
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守94

①$(-3)×5$を計算せよ。

②$\frac{x}{2}-2+(\frac{x}{5}-1)$を計算せよ。

③$24xy^2÷(-8xy)×2x$を計算せよ。

④$(\sqrt{3}+\sqrt{2})(2\sqrt{3}+\sqrt{2})+\frac{6}{\sqrt{6}}$を計算せよ。

⑤$(x-3)^2-(x+4)(x-4)$を計算せよ。

⑥$x^2-8x+12$を因数分解せよ。

⑦右の図のように、底面が正方形BCDEである正四角すいABCDEがある。
このとき、直線BCとねじれの位置にある直線をすべて書きなさい。

⑧気温は、高度が100$m$増すごとに0.6℃ずつ低くなる。
地上の気温が7.6℃のとき、地上から2000m上空の気温は何℃か求めよ。

⑨下の表は、あるクラスの13人のハンドボール投げの記録を、大きさの順に並べたものである。
この13人と太郎さんを合わせた14人の記録の中央値は、太郎さんを合わせる前の13人の記録の中央値と比べて、1$m$大きい。
このとき太郎さんの記録は何$m$か求めよ。
この動画を見る 
PAGE TOP