東海大(医)漸化式 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

東海大(医)漸化式 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
東海大学過去問題
$a_1=0,a_{n+1=2a_n+n^2}$
一般項$a_n$を求めよ。
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
東海大学過去問題
$a_1=0,a_{n+1=2a_n+n^2}$
一般項$a_n$を求めよ。
投稿日:2018.06.22

<関連動画>

関西大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
関西大学過去問題
n自然数
$a_1=3 \quad\quad a_{n+1}=2a_n-n^2+n$
$a_n$をnで表せ

立教大学過去問題
$2^{18}-1$を素因数分解
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察5(受験編)

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#式の計算(整式・展開・因数分解)#微分法と積分法#恒等式・等式・不等式の証明#接線と増減表・最大値・最小値#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#微分とその応用#色々な関数の導関数#接線と法線・平均値の定理#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数B#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$n$個の正の数$a_1,a_2,\cdots,a_n$に対して

$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}\\$
この動画を見る 

16神奈川県教員採用試験(数学:8番 数列の極限)

アイキャッチ画像
単元: #数列#漸化式#関数と極限#数列の極限#数学(高校生)#数B#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
8⃣ $3S_n=a_n+6n+1$のとき$\displaystyle \lim_{ n \to \infty } a_n$を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(5)〜n進法と等比数列

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)3進法で表された3n桁の整数
$\overbrace{ 210210\cdots210_{(3)}}^{ 3n桁 }$
がある(ただし、nは自然数とする)。この数は、$1 \leqq k \leqq n$を満たす全て
の自然数$k$に対して、最小の位から数えて3k番目の位の数が$2、3k-1$番目の位
の数が$1、3k-2$番目の位の数が0である。この数を10進法で表した数を$a_n$
とおく。
$(\textrm{i})a_2=\boxed{\ \ ク\ \ }$である。

2021慶應義塾大学薬学部過去問
$(\textrm{ii})a_n$をnの式で表すと、$\boxed{\ \ ケ\ \ }$である。
この動画を見る 

福田の数学〜筑波大学2022年理系第2問〜確率漸化式と常用対数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数B
指導講師: 福田次郎
問題文全文(内容文):
整数$\ a_1,\ a_2,\ a_3,\ \ldots$を、さいころをくり返し投げることにより、以下のように
定めていく。まず$a_1=1$とする。そして、正の整数$n$に対し、$a_{n+1}$の値を、n回目に
出たさいころの目に応じて、次の規則で定める。
$(\ 規則\ )$ n回目に出た目が1,2,3,4なら$a_{n+1}=a_n、5,6$なら$a_{n+1}=-a_n$
例えば、さいころを3回投げ、その出た目が順に5,3,6であったとすると、
$a_1=1,a_2=-1,a_3=-1,a_4=1$となる。
$a_n=1$となる確率を$p_n$とする。ただし、$p_1=1$とし、さいころのどの目も、
出る確率は$\frac{1}{6}$であるとする。
(1)$p_2,p_3$を求めよ。
(2)$p_{n+1}$を$p_n$を用いて表せ。
(3)$p_n \leqq 0.5000005$を満たす最小の正の整数nを求めよ。
ただし、$0.47 \lt \log_{10}3 \lt 0.48$であることを用いてよい。

2022筑波大学理系過去問
この動画を見る 
PAGE TOP